Tarski and Coq

A. Assaf!?

LINRIA Paris-Rocquencourt (Deducteam)
2Ecole Polytechnique

PPS Type Theory Work Group
7 January 2015

1/45

Motivation

2/45

Tarski and Coq

3/45

Universes in Coq

m Infinite hierarchy
Prop, Type, : Type; : Type, : ...

m Cumulative
Prop C Type, C Type; C Type, : ...

L A:Type;
F'FA:Type;

4/a5

Subtyping

m Relation < between terms

Prop < Type, Type,; < TypeH_1

A=B B<C
A<B Iz : AB<Ilz: AC

m Subsumption rule
'EM:A A<B

I'-M:B

5/45

Problems with implicit subtyping

m Not syntax directed
'-M:A A<B

I'M:B

6/45

Problems with implicit subtyping

m Not syntax directed
'-M:A A<B

I'M:B

m No type uniqueness

M:AANM:B = A=B

6/45

Problems with implicit subtyping

m Not syntax directed
'-M:A A<B

I'M:B

m No type uniqueness

M:ANM:B =5 A=B

m No subject reduction for minimal type

(Az : Type,.x) Type, : Type, —>g Type, : Type,

6/45

Explicit subtyping

m Explicit coercions
Ti: Type;, — Type,
m Only conversion rule
'EM: A A=B
I'-M:B

7/45

Explicit subtyping

m Explicit coercions
Ti: Type; — Type,
m Only conversion rule
'EM: A A=B
I'-M:B

m Type uniqueness, subject reduction

(Az : Type,.z) (T1 Typey) : Type, —p T1 Type, : Type,

7/45

Universes in Type Theory

8/45

Universes in type theory

Martin-Lof’s Intuitionistic Type Theory (ITT):
m Infinite hierarchy of predicative universes

m Cumulativity

Pure Type Systems (PTS):
m Impredicativity: System F, Calculus of constructions, ...

m No cumulativity

9/45

Universes in Coq

Calculus of Inductive Constructions (CIC):
m Infinite predicative universe hierarchy Type,
m Impredicative universe Prop
m Cumulativity
m Inductive types

m (Universe polymorphism)

10 /45

Intuitionistic Type Theory

Type formation rules
A type x:AF B type
Iz : A.B type
Introduction and elimination rules

r:A-M:B M :Ilx: A.B N:A
e :AM:1lx: A.B M N : Bz\N]

(Typed) equalities

(Az: AM)N=MI[z\N] : Blz\N]

11/45

Russell vs. Tarski

= Russell style

U; type

U; : Uipr
m Tarski style

U; type

u; : Ui+1

12 /45

Tarski style universes

m u; is a code for U; in U; 41

m T, () is a decoding function

Tit1 (us)
Tiv1 (1 (A) = Ti(4)

|
&

13 /45

Tarski style universes

m u; is a code for U; in U; 41
m T, () is a decoding function
Tit1 (us)
Tiri (1i(4)) = Ti(4)

|
&

m m;x: A.Bis a code for product types in U;

A:U; rz:AF B:U;
mx: AB:U;

13 /45

Russell vs. Tarski

m Russell "informal version" of Tarski

m Erasure function | M|

IFT Frarski M @ A then || Frussen |M] : |A].

14 /45

Russell vs. Tarski

m Russell "informal version" of Tarski

m Erasure function | M|

IFT Frarski M @ A then || Frussen |M] : |A].

Converse?

14 /45

Notations

l [ITT [Coq [LF [AT modulo™ | Assaf ‘
Universes U Type | Type Utype
Decoding T() El() EType()
Product codes m T Type
Universe codes u Type
Code lifting t +

* Cousineau and Dowek, Embedding pure type systems in the lambda-Pi
calculus modulo, TLCA 2007

15 /45

From Russell to Tarski

16 / 45

Counter-example (Assaf 2014)

In the context

a,b : Type,
g+ Type; — Type,
f + Ta,b: Type,.p(Ilz : a.b)

g : Ic:Typey.p(c) = q(c)
we have

g(Ilz : a.b) (fab) : q(Ilz:a.b)

17 /45

Counter-example (Assaf 2014)

In the context
a,b : Type,
p,q : Typey — Type;
f o Ta,b:Type,. Ti(p(mix: toa.-tob))

g : Ic:Typey.Ti(p(toc)) = T1(q(Toc))
we have

g(moz:ab)(f(Toa)(Tod)) : Ti(q(To(moz:a.b)))

17 /45

Counter-example (Assaf 2014)

In the context

a,b : Type,
pq : Type; — Type,
f o Ta,b:Type,. Ti(p(mix: toa.-tob))
g + Hec:Typeg. T (p(Toc)) = Ti(q(toc))
we have
g(mox:a.b)(f(toa)(Tob)) / Til(q(to(moz:ab))) X
f(Toa) (Tod) : Ti(p(mz:Toa.Tob))

17 /45

Culprit: Multiple representations

Different typing derivations yield different terms
A : Type, z:AF B:Type,
Iz : A.B : Type,
Iz : A.B : Type,

Ti (7T7; X . a.b)

A : Type, x: A B:Type,
A Type, z:AlF B: Type,
Iz : A.B : Type,

Ti4+1 T : Tz ale

18 /45

Anti-solutions

m Consider that Russell style is unsound

m Put additional annotations on II

19 /45

Solution: Reflect equalities

Add equation

Ti(mz:iab) = mpix:tiatib

20/ 45

Solution: Reflect equalities

Add equation
Ti(mz:iab) = mpix:tiatib
How does this help?

a,b : Type,
p,g = Type; — Type,
f : Ta,b:Type,. Ti(p(miz: toa.tob))
g + Tle:Typey. Ti(p(toc)) = Ti(q(Toc))

g(mox:ab)(f(toa)(tod)) : Ti(g(to(mox: ab)))
f(toa)(Tod) : Ti(p(miz:toa.tob))

20/ 45

Solution: Reflect equalities

Add equation
Ti(mz:iab) = mpix:tiatib
How does this help?

a,b : Type,
p,g = Type; — Type,
f : Ta,b:Type,. Ti(p(miz: toa.tob))
g + Tle:Typey. Ti(p(toc)) = Ti(q(Toc))

g(mox:ab)(f(toa)(tod)) : Ti(g(to(mox:ab)) v
f(toa) (Tod) : Ti(p(fo(mox: ab)))

20/ 45

A history of reflecting equalities

Reflection known but not used
m P. Martin-L&f, Intuitionistic type theory, 1984
m E. Palmgren, On universes in type theory, 1993

“The usefulness of reflecting equalities of sets is not clear.”

m Z. Luo, Computation and reasoning, 1994

“We may also enforce the name uniqueness [...]. However, this is not
essential.”

21/45

Properties

m Terms must have a unique representation

Theorem (Canonicity)
If|M| =|M'| then M = M'.

m Essential for completeness

IfT FRussetr M 2 A then I’ FTarski M’ . A’ such that
T|=T, |[M'| =M, |A'|=A.

22/45

Deriving Tarski

To understand the Tarski style:

23/45

Deriving Tarski

To understand the Tarski style:

1 Start with the usual types

A type z:AF B type
Nat type Iz : A.B type

23/45

Deriving Tarski

To understand the Tarski style:

1 Start with the usual types

A type z:AF B type
Nat type Iz : A.B type

2 Add a universe reflecting all the currently existing types

A :Ug
Uo type To(A) type

A:Ug z:To(A)F B:Ug

nato : Ug mox: A.B:Ug
To (natg) = Nat
T() (ﬂ'o.’r AB) = H:E:To (A)To (Bx)

23/45

Deriving Tarski

3 Add another universe reflecting all the currently existing types...

A: U,
U, type T:1(A) type

A:U; z:T1(A)FB:Up

nat; : Up mx:AB:Up
T, (natl) = Nat
Ti(mz:AB) = Hz:T1(A).T:i(Bux)

24 /45

Deriving Tarski

3 Add another universe reflecting all the currently existing types...

A: U,
U, type T:1(A) type

A:U; z:T1(A)FB:Up

nat; : Up mx:AB:Up
T, (natl) = Nat
Ti(mz:AB) = Hz:T1(A).T:i(Bux)
A :Ug

up : Up to (A) : Uy

T1 (UO) = Uo
T: (t() (A)) = To (A)

24 /45

Deriving Tarski

. and all the currently existing type equalities!

to (natg) = naty
to (TI'()QSZA.B) = mx:ty (A) 1o (B)

25 /45

Deriving Tarski

. and all the currently existing type equalities!

to (natg) = naty
to (TI'()QSZA.B) = mx:ty (A) 1o (B)

N.B.: A miracle just happened.

25 /45

Deriving Tarski

.. and all the currently existing type equalities!

to (natg) = naty
to (TI'()QSZA.B) = mx:ty (A) 1o (B)

N.B.: A miracle just happened.

4 lterate for fun and profit!

25 /45

A Back to Coq

26 /45

ITT vs. Coq

Impredicativity
Judgmental equality vs computational equality

Operational semantics based on reductions

(Universe polymorphism)

27 /45

Impredicativity

m Russell style
A : Prop

Prop : Type, A : Type,

A : Type, x:AF B: Prop
IIz : A.B : Prop

28 /45

Impredicativity

m Russell style
A : Prop

Prop : Type, A : Type,

A : Type, x:AF B: Prop
IIz : A.B : Prop

m Tarski style
A : Prop

prop : Type; Terop A : Typey
A Type, xz:AF B : Prop
Vix: A.B : Prop

28 /45

Impredicativity

Circularity:
m Prop is included in Type,,
m which is included in Type,,

which is included in Type,,

all of which can be injected in Prop with a product!

20 /45

Impredicativity

Circularity:
m Prop is included in Type,,
m which is included in Type,,
m which is included in Type,,
.

m all of which can be injected in Prop with a product!

Step-by-step construction does not work anymore!

20 /45

Impredicativity

Circularity:
m Prop is included in Type,,
m which is included in Type,,
m which is included in Type,,
.

m all of which can be injected in Prop with a product!

Step-by-step construction does not work anymore!

Solution: Look at multiplicity of typing derivations.

20 /45

Prop ambiguity 1

Ambiguity in the level of the argument type
A : Type, z:AF B: Prop

IIz : A.B : Prop Viz
7A:Typei rz:AF B: Prop
A: Typeiss Vigrz:1i A.B
Ilz : A.B : Prop e e

30/45

Prop ambiguity 2

Ambiguity in the level of the product

A Type, z:AF B: Prop
IIz : A.B : Prop
Ilz : A.B : Type,;

Tl(:’ir)op (V’L Z: AB)
z:AlF B: Prop
z: Al B: Type,
Ilz : A.B : Type,

A : Type,

mx: A Té,irlp B

31/45

Prop equalities

Add equations

Vi+1 X : ’]} AB = Vl xX . AB
tono (Viz: AB) = mz: A1) B
Prop 4 N . - v . * I Prop

32/45

Prop equalities

Add equations

Vi+1 X : ’]} AB = Vl xX . AB
tono (Viz: AB) = mz: A1) B
Prop 4 N . - v . * | Prop

IfT' FRussett M : A then I FTarski M’ . A’ such that
|P/| =T, |M/| =M, |A/| =A

32/45

Uniform equalities

m s; — so rules of the PTS
s1 — Prop = Prop Prop — s2 = s2 Type;, = Type; = Type,ax(i,j)
m 51V sz join of the C relation
51V Prop = s1 Prop V s2 = s2 Type; V Type; = Type, axi j)

m Single equality

SS_)S4 . — . 83 34
B (s, AB) = Tojvss,sovs, T 18 A 15 B

33/45

Conversion

Judgmental equality
m Typed
m Could be undecidable

Computational equality
m Untyped
m Algorithmic aspect (e.g. based on reductions)

m Conditions for decidability (e.g. confluence + SN)

34/45

Conversion

Judgmental equality
m Typed
m Could be undecidable

Computational equality
m Untyped
m Algorithmic aspect (e.g. based on reductions)

m Conditions for decidability (e.g. confluence + SN)

Theorem (Herbelin and Siles 2012)

The two are equivalent for pure type systems.

34/45

Computational equality a la Tarski

To decide equivalence in the Tarski style, we can:

m erase and use the Russell style,

35/45

Computational equality a la Tarski

To decide equivalence in the Tarski style, we can:

m erase and use the Russell style,

m or devise an algorithm working directly in the Tarski style,

35/45

Computational equality a la Tarski

To decide equivalence in the Tarski style, we can:

m erase and use the Russell style,

m or devise an algorithm working directly in the Tarski style,

m or even try to specify everything with reduction rules only.

35/45

Reduction rules

Operational semantics based on reductions
M —B N

Transform equations into rewrite rules

Tit1 (type;) = Type;
Tiv1 (15 A) T (4)

36 /45

Reduction rules

Operational semantics based on reductions
M —B N
Transform equations into rewrite rules
Tit1(type;)) — Type;

36 /45

Distributing 1; is enough

Ti (ﬂ'il’:a.b) = 7ri+1x:Tia.Tib

37 /45

Distributing 1; is enough

Ti (ﬂ'il’:a.b) — 7T7;+1:L’2Tia.Tib

37 /45

m Distributing 1; breaks confluence because of the rule

Vi+1 X : Tz AB — V, x:AB

38/45

With Prop

m Distributing 1; breaks confluence because of the rule

Vi+1 X : Tz AB — V, x:AB

m Need to raise T to the top

Ti(miz:ab) +— mpix:tia.tib
Vi z:AB <+— \v/iJrl xT Tl A.B
19 (Vixw: AB) «— ma: A B

Prop Prop

38/45

With Prop

m Distributing 1; breaks confluence because of the rule

Vi+1 X : Tz AB — V, x:AB

m Need to raise T to the top

Ti(miz:ab) +— mpix:tia.tib
Vi z:AB <+— \v/iJrl xT Tl A.B
19 (Vixw: AB) «— ma: A B

Prop Prop

m Corresponds to minimal typing!

38/45

What else is there?

Inductive types: No problem (Luo 1994)
m Add equations to ensure canonicity between codes at different levels,

m or use uniform constructions (a single code that can be lifted).

390/45

What else is there?

Inductive types: No problem (Luo 1994)
m Add equations to ensure canonicity between codes at different levels,

m or use uniform constructions (a single code that can be lifted).

Universe polymorphism:
m Need to handle algebraic universe expressions.
m Conversion based on reductions seems impossible (AC, idempotence).

m Need additional equations for polymorphic constants to ensure canonicity
(constant definitions, inductive types, ...).

390/45

Conclusion

40/ 45

Conclusion

m Russell style = implicit, Tarski style = explicit
m Tarski = Russell trivially
m Tarski <= Russell only under proper conditions

41 /45

Conclusion

Russell style:
= Implicit
m “Informal”

m “Bad” properties:

m Not syntax directed
m No type uniqueness
m No minimal type preservation

m Simple conversion

42 /45

Conclusion

Tarski style:

Explicit

“Formal”

m All the usual “good” properties
m Simple conversion in ITT
n

Equational theory more complex with Prop

43 /45

Conclusion

Prop is as annoying as ever.

Prop

Because an infinite Type hierarchy wasn't enough

44 /45

Conclusion

Prop is as annoying as ever.

Because an infinite Type hierarchy wasn't enough

Thanks!

44 /45

References

[

[

Martin-Lof
Intuitionistic type theory
Bibliopolis Naples, 1984

E. Palmgren

On universes in type theory

In Twenty-five years of constructive type theory
Oxford University Press, 1998

Z. Luo
Computation and Reasoning: A Type Theory for Computer Science,
Oxford University Press, 1994

H. Herbelin and V. Siles
Pure Type System conversion is always typable
In Journal of Functional Programming 22-02, 2012

A. Assaf
A Calculus of constructions with explicit subtyping
submitted to Post-proceedings of TYPES 2014

45 /45

	Motivation
	Universes in Type Theory
	From Russell to Tarski
	Back to Coq
	Conclusion

