Tarski and Coq

A. $\mathsf{Assaf}^{1,2}$

 1 INRIA Paris-Rocquencourt (Deducteam) 2 Ecole Polytechnique

PPS Type Theory Work Group 7 January 2015

- 1 Motivation
- 2 Universes in Type Theory
- 3 From Russell to Tarski
- 4 Back to Coq
- 5 Conclusion

Tarski and Coq

Universes in Coq

■ Infinite hierarchy

$$\mathsf{Prop}, \mathsf{Type}_0 : \mathsf{Type}_1 : \mathsf{Type}_2 : \dots$$

■ Cumulative

$$\mathsf{Prop} \subseteq \mathsf{Type}_0 \subseteq \mathsf{Type}_1 \subseteq \mathsf{Type}_2 : \dots$$

$$\frac{\Gamma \vdash A : \mathsf{Type}_i}{\Gamma \vdash A : \mathsf{Type}_{i+1}}$$

Subtyping

■ Relation ≤ between terms

$$\label{eq:property} \begin{split} \overline{\mathsf{Prop}} & \subseteq \mathsf{Type}_0 & \overline{\mathsf{Type}_i \leq \mathsf{Type}_{i+1}} \\ \frac{A \equiv B}{A \leq B} & \frac{B \leq C}{\Pi x : A.B \leq \Pi x : A.C} \end{split}$$

Subsumption rule

$$\frac{\Gamma \vdash M : A \qquad A \leq B}{\Gamma \vdash M : B}$$

Problems with implicit subtyping

■ Not syntax directed

$$\frac{\Gamma \vdash \pmb{M} : A \qquad A \leq B}{\Gamma \vdash \pmb{M} : B}$$

Problems with implicit subtyping

Not syntax directed

$$\frac{\Gamma \vdash \mathbf{M} : A \qquad A \leq B}{\Gamma \vdash \mathbf{M} : B}$$

■ No type uniqueness

$$M:A\wedge M:B\implies A\equiv B$$

Problems with implicit subtyping

Not syntax directed

$$\frac{\Gamma \vdash \pmb{M} : A \qquad A \leq B}{\Gamma \vdash \pmb{M} : B}$$

No type uniqueness

$$M: A \land M: B \implies A \equiv B$$

■ No subject reduction for minimal type

Example

$$(\lambda x : \mathsf{Type}_2.x) \ \mathsf{Type}_0 : \mathsf{Type}_2 \longrightarrow_\beta \mathsf{Type}_0 : \mathsf{Type}_1$$

Explicit subtyping

Explicit coercions

$$\uparrow_i: \mathsf{Type}_i o \mathsf{Type}_{i+1}$$

■ Only conversion rule

$$\frac{\Gamma \vdash M : A \qquad A \equiv B}{\Gamma \vdash M : B}$$

Explicit subtyping

Explicit coercions

$$\uparrow_i : \mathsf{Type}_i \to \mathsf{Type}_{i+1}$$

Only conversion rule

$$\frac{\Gamma \vdash M : A \qquad A \equiv B}{\Gamma \vdash M : B}$$

■ Type uniqueness, subject reduction

Example

$$(\lambda x : \mathsf{Type}_2.x) \ (\mathop{\uparrow_{1}} \mathsf{Type}_0) : \mathsf{Type}_2 \longrightarrow_{\beta} \mathop{\uparrow_{1}} \mathsf{Type}_0 : \mathsf{Type}_2$$

- 1 Motivation
- 2 Universes in Type Theory
- 3 From Russell to Tarski
- 4 Back to Coq
- 5 Conclusion

Universes in type theory

Martin-Lof's Intuitionistic Type Theory (ITT):

- Infinite hierarchy of *predicative* universes
- Cumulativity

Pure Type Systems (PTS):

- Impredicativity: System F, Calculus of constructions, ...
- No cumulativity

Universes in Coq

Calculus of Inductive Constructions (CIC):

- Infinite predicative universe hierarchy Type_i
- Impredicative universe Prop
- Cumulativity
- Inductive types
- (Universe polymorphism)

Intuitionistic Type Theory

Type formation rules

$$\frac{A \quad \text{type} \quad x: A \vdash B \quad \text{type}}{\Pi x: A.B \quad \text{type}}$$

Introduction and elimination rules

$$\frac{x:A \vdash M:B}{\lambda x:A.M:\Pi x:A.B} \qquad \frac{M:\Pi x:A.B \quad N:A}{M \, N:B \, [x \backslash N]}$$

(Typed) equalities

$$(\lambda x:A.M)\ N\equiv M\left[x\backslash N\right]\quad :\quad B\left[x\backslash N\right]$$

Russell vs. Tarski

■ Russell style

■ Tarski style

$$\frac{A: \mathsf{U}_i}{\mathsf{U}_i \quad \mathrm{type}} \qquad \frac{A: \mathsf{U}_i}{\mathsf{T}_i\left(A\right) \quad \mathrm{type}} \\ \frac{A: \mathsf{U}_i}{\mathsf{u}_i: \mathsf{U}_{i+1}} \qquad \frac{A: \mathsf{U}_i}{\uparrow_i\left(A\right): \mathsf{U}_{i+1}}$$

Tarski style universes

- \blacksquare u_i is a *code* for U_i in U_{i+1}
- \blacksquare T_i () is a *decoding* function

$$\mathsf{T}_{i+1}\left(\mathsf{u}_{i}\right) \equiv \mathsf{U}_{i}$$
 $\mathsf{T}_{i+1}\left(\uparrow_{i}\left(A\right)\right) \equiv \mathsf{T}_{i}\left(A\right)$

Tarski style universes

- \blacksquare u_i is a *code* for U_i in U_{i+1}
- \blacksquare $\mathsf{T}_i()$ is a *decoding* function

$$\mathsf{T}_{i+1} \left(\mathsf{u}_{i} \right) \equiv \mathsf{U}_{i}$$
 $\mathsf{T}_{i+1} \left(\uparrow_{i} \left(A \right) \right) \equiv \mathsf{T}_{i} \left(A \right)$

 \blacksquare $\pi_i x : A.B$ is a code for product types in U_i

$$\frac{A:\mathsf{U}_i \qquad x:A \vdash B:\mathsf{U}_i}{\pi_i\,x:A.B:\mathsf{U}_i}$$

$$\mathsf{T}_{i}\left(\pi_{i}\,x:A.B\right) \equiv \Pi x:\mathsf{T}_{i}\left(A\right).\mathsf{T}_{i}\left(B\right)$$

Russell vs. Tarski

- Russell "informal version" of Tarski
- $\blacksquare \ \, \mathsf{Erasure} \ \, \mathsf{function} \, \, |M|$

Theorem

If $\Gamma \vdash_{Tarski} M : A$ then $|\Gamma| \vdash_{Russell} |M| : |A|$.

Russell vs. Tarski

- Russell "informal version" of Tarski
- $\blacksquare \ {\it Erasure function} \ |M|$

Theorem

If $\Gamma \vdash_{Tarski} M : A$ then $|\Gamma| \vdash_{Russell} |M| : |A|$.

Converse?

Notations

	ITT	Coq	LF	$\lambda\Pi$ modulo *	Assaf
Universes	U	Туре	Туре	U_{Type}	
Decoding	T()		EI()	$\varepsilon_{Type}()$	
Product codes	π			$\dot{\pi}_{Type}$	
Universe codes	u			Туре	
Code lifting	t				↑

* Cousineau and Dowek, Embedding pure type systems in the lambda-Pi calculus modulo, TLCA 2007

- 1 Motivation
- 2 Universes in Type Theory
- 3 From Russell to Tarski
- 4 Back to Coq
- 5 Conclusion

Counter-example (Assaf 2014)

In the context

a, b : Type₀

 $p,q \quad : \quad \mathsf{Type}_1 \to \mathsf{Type}_1$

 $f \quad : \quad \Pi a, b : \mathsf{Type}_1.\, p \, (\Pi x : a.b)$

 $g : \Pi c : \mathsf{Type}_0. \, p\left(c\right) o q\left(c\right)$

we have

$$g\left(\Pi x:a.b\right)\left(f\:a\:b\right)\quad :\quad q\left(\Pi x:a.b\right)$$

Counter-example (Assaf 2014)

In the context

```
\begin{array}{lcl} a,b & : & \mathsf{Type}_0 \\ p,q & : & \mathsf{Type}_1 \to \mathsf{Type}_1 \\ f & : & \Pi a,b : \mathsf{Type}_1. \, \mathsf{T}_1 \left( p \left( \pi_1 \, x : \uparrow_0 a. \, \uparrow_0 b \right) \right) \\ g & : & \Pi c : \mathsf{Type}_0. \, \mathsf{T}_1 \left( p \left( \uparrow_0 \, c \right) \right) \to \mathsf{T}_1 \left( q \left( \uparrow_0 \, c \right) \right) \end{array}
```

we have

$$g(\pi_0 x: a.b) (f(\uparrow_0 a) (\uparrow_0 b)) : \mathsf{T}_1 (q(\uparrow_0 (\pi_0 x: a.b)))$$

Counter-example (Assaf 2014)

In the context

we have

```
\begin{array}{rcl} a,b & : & \mathsf{Type}_0 \\ p,q & : & \mathsf{Type}_1 \to \mathsf{Type}_1 \\ f & : & \Pi a,b : \mathsf{Type}_1.\,\mathsf{T}_1\left(p\left(\pi_1\,x: \uparrow_0 a. \uparrow_0 b\right)\right) \\ g & : & \Pi c : \mathsf{Type}_0.\,\mathsf{T}_1\left(p\left(\uparrow_0 c\right)\right) \to \mathsf{T}_1\left(q\left(\uparrow_0 c\right)\right) \\ \end{array}
```

Culprit: Multiple representations

Different typing derivations yield different terms

$$\frac{A: \mathsf{Type}_0 \qquad x: A \vdash B: \mathsf{Type}_0}{\prod x: A.B: \mathsf{Type}_0} \qquad \qquad \uparrow_i \left(\pi_i \, x: a.b\right) \\ \frac{A: \mathsf{Type}_0}{A: \mathsf{Type}_1} \qquad \frac{x: A \vdash B: \mathsf{Type}_0}{x: A \vdash B: \mathsf{Type}_1} \\ \frac{A: \mathsf{Type}_0}{\prod x: A.B: \mathsf{Type}_1} \qquad \pi_{i+1} \, x: \uparrow_i a. \uparrow_i b$$

Anti-solutions

- Consider that Russell style is unsound
- lacksquare Put additional annotations on Π

Solution: Reflect equalities

Add equation

$$\uparrow_i (\pi_i x : a.b) \equiv \pi_{i+1} x : \uparrow_i a. \uparrow_i b$$

Solution: Reflect equalities

Add equation

$$\uparrow_i (\pi_i x : a.b) \equiv \pi_{i+1} x : \uparrow_i a. \uparrow_i b$$

How does this help?

```
\begin{array}{rcl} a,b & : & \mathsf{Type}_0 \\ p,q & : & \mathsf{Type}_1 \to \mathsf{Type}_1 \\ f & : & \Pi a,b : \mathsf{Type}_1. \, \mathsf{T}_1 \left( p \left( \pi_1 \, x : \uparrow_0 \, a. \, \uparrow_0 \, b \right) \right) \\ g & : & \Pi c : \mathsf{Type}_0. \, \mathsf{T}_1 \left( p \left( \uparrow_0 \, c \right) \right) \to \mathsf{T}_1 \left( q \left( \uparrow_0 \, c \right) \right) \end{array} g \left( \pi_0 \, x : a.b \right) \left( f \left( \uparrow_0 \, a \right) \left( \uparrow_0 \, b \right) \right) \quad : \quad \mathsf{T}_1 \left( q \left( \uparrow_0 \left( \pi_0 \, x : a.b \right) \right) \right) \\ f \left( \uparrow_0 \, a \right) \left( \uparrow_0 \, b \right) \quad : \quad \mathsf{T}_1 \left( p \left( \pi_1 \, x : \uparrow_0 \, a. \, \uparrow_0 \, b \right) \right) \end{array}
```

Solution: Reflect equalities

Add equation

$$\uparrow_i (\pi_i x : a.b) \equiv \pi_{i+1} x : \uparrow_i a. \uparrow_i b$$

How does this help?

a, b: Type₀

```
\begin{array}{rcl} p,q & : & \mathsf{Type_1} \to \mathsf{Type_1} \\ f & : & \Pi a,b : \mathsf{Type_1}. \, \mathsf{T_1} \left( p \left( \pi_1 \, x : \uparrow_0 \, a. \, \uparrow_0 \, b \right) \right) \\ g & : & \Pi c : \mathsf{Type_0}. \, \mathsf{T_1} \left( p \left( \uparrow_0 \, c \right) \right) \to \mathsf{T_1} \left( q \left( \uparrow_0 \, c \right) \right) \\ \end{array} g \left( \pi_0 \, x : a.b \right) \left( f \left( \uparrow_0 \, a \right) \left( \uparrow_0 \, b \right) \right) & : & \mathsf{T_1} \left( q \left( \uparrow_0 \left( \pi_0 \, x : a.b \right) \right) \right) \quad \checkmark \\ f \left( \uparrow_0 \, a \right) \left( \uparrow_0 \, b \right) & : & \mathsf{T_1} \left( p \left( \uparrow_0 \left( \pi_0 \, x : a.b \right) \right) \right) \end{array}
```

A history of reflecting equalities

Reflection known but not used

- P. Martin-Löf, Intuitionistic type theory, 1984
- E. Palmgren, On universes in type theory, 1993

"The usefulness of reflecting equalities of sets is not clear."

Z. Luo, Computation and reasoning, 1994

"We may also enforce the name uniqueness [...]. However, this is not essential."

Properties

■ Terms must have a unique representation

Theorem (Canonicity)

If
$$|M| \equiv |M'|$$
 then $M \equiv M'$.

■ Essential for completeness

Theorem

If
$$\Gamma \vdash_{Russell} M: A$$
 then $\Gamma' \vdash_{Tarski} M': A'$ such that $|\Gamma'| = \Gamma, \ |M'| = M, \ |A'| = A.$

To understand the Tarski style:

To understand the Tarski style:

1 Start with the usual types

$$\begin{tabular}{lll} \hline \textbf{Nat} & type & \hline & A & type & x:A \vdash B & type \\ \hline & \Pi x:A.B & type & \\ \hline \end{tabular}$$

To understand the Tarski style:

1 Start with the usual types

$$\frac{A \quad \text{type} \qquad x: A \vdash B \quad \text{type}}{\Pi x: A.B \quad \text{type}}$$

2 Add a universe reflecting all the currently existing types

$$\begin{array}{cccc} \overline{\mathsf{U}_0 & \mathsf{type}} & \frac{A: \mathsf{U}_0}{\mathsf{T}_0\left(A\right) & \mathsf{type}} \\ \\ \underline{\mathsf{nat}_0: \mathsf{U}_0} & \frac{A: \mathsf{U}_0 & x: \mathsf{T}_0\left(A\right) \vdash B: \mathsf{U}_0}{\pi_0 \, x: A.B: \mathsf{U}_0} \\ \\ \mathsf{T}_0\left(\mathsf{nat}_0\right) & \equiv & \mathsf{Nat} \\ \mathsf{T}_0\left(\pi_0 \, x: A.B\right) & \equiv & \Pi x: \mathsf{T}_0\left(A\right). \mathsf{T}_0\left(B \, x\right) \end{array}$$

3 Add another universe reflecting all the currently existing types...

$$\begin{array}{cccc} \overline{\mathsf{U}_1} & \mathsf{type} & \overline{\mathsf{T}_1\left(A\right)} & \mathsf{type} \\ \\ \overline{\mathsf{nat}_1 : \mathsf{U}_1} & \underline{A : \mathsf{U}_1} & \underline{x : \mathsf{T}_1\left(A\right) \vdash B : \mathsf{U}_1} \\ \\ \overline{\mathsf{T}_1\left(\mathsf{nat}_1\right)} & \overline{\pi}_1\,x : A.B : \mathsf{U}_1 \\ \\ \overline{\mathsf{T}_1\left(\pi_1\,x : A.B\right)} & \overline{\equiv} & \mathsf{Nat} \\ \\ \overline{\mathsf{T}_1\left(\pi_1\,x : A.B\right)} & \overline{\equiv} & \Pi x : \mathsf{T}_1\left(A\right).\,\mathsf{T}_1\left(B\,x\right) \\ \end{array}$$

3 Add another universe reflecting all the currently existing types...

$$\begin{array}{cccc} \overline{\mathsf{U}_1 & \mathsf{type}} & \overline{\mathsf{T}_1\left(A\right) & \mathsf{type}} \\ \\ \overline{\mathsf{nat}_1 : \mathsf{U}_1} & \overline{\mathsf{A} : \mathsf{U}_1} & x : \mathsf{T}_1\left(A\right) \vdash B : \mathsf{U}_1 \\ \\ \overline{\mathsf{nat}_1 : \mathsf{U}_1} & \overline{\pi_1 \, x : A.B : \mathsf{U}_1} \\ \\ \overline{\mathsf{T}_1\left(\mathsf{nat}_1\right)} & \equiv & \mathsf{Nat} \\ \overline{\mathsf{T}_1\left(\pi_1 \, x : A.B\right)} & \equiv & \Pi x : \mathsf{T}_1\left(A\right).\, \mathsf{T}_1\left(B \, x\right) \\ \\ \overline{\mathsf{u}_0 : \mathsf{U}_1} & \overline{\mathsf{t}_0\left(A\right) : \mathsf{U}_1} \\ \\ \overline{\mathsf{T}_1\left(\mathsf{u}_0\right)} & \equiv & \mathsf{U}_0 \\ \overline{\mathsf{T}_1\left(\mathsf{t}_0\left(A\right)\right)} & \equiv & \mathsf{T}_0\left(A\right) \\ \end{array}$$

Deriving Tarski

... and all the currently existing type equalities!

$$\begin{array}{rcl} & \mathsf{t}_0 \, (\mathsf{nat}_0) & \equiv & \mathsf{nat}_1 \\ & \mathsf{t}_0 \, (\pi_0 \, x : A.B) & \equiv & \pi_1 \, x : \mathsf{t}_0 \, (A) \, .\mathsf{t}_0 \, (B) \end{array}$$

Deriving Tarski

... and all the currently existing type equalities!

$$\begin{array}{rcl} & \mathsf{t}_0 \, (\mathsf{nat}_0) & \equiv & \mathsf{nat}_1 \\ & \mathsf{t}_0 \, (\pi_0 \, x : A.B) & \equiv & \pi_1 \, x : \mathsf{t}_0 \, (A) \, .\mathsf{t}_0 \, (B) \end{array}$$

N.B.: A miracle just happened.

Deriving Tarski

... and all the currently existing type equalities!

$$\begin{array}{rcl} \mathbf{t}_0 \, (\mathsf{nat}_0) & \equiv & \mathsf{nat}_1 \\ \\ \mathbf{t}_0 \, (\pi_0 \, x : A.B) & \equiv & \pi_1 \, x : \mathbf{t}_0 \, (A) \, . \mathbf{t}_0 \, (B) \end{array}$$

N.B.: A miracle just happened.

4 Iterate for fun and profit!

- 1 Motivation
- 2 Universes in Type Theory
- 3 From Russell to Tarski
- 4 Back to Coq
- 5 Conclusion

ITT vs. Coq

- Impredicativity
- Judgmental equality vs computational equality
- Operational semantics based on reductions
- (Universe polymorphism)

■ Russell style

$$\frac{A:\mathsf{Prop}}{\mathsf{Prop}:\mathsf{Type}_1} \qquad \frac{A:\mathsf{Prop}}{A:\mathsf{Type}_0} \\ \frac{A:\mathsf{Type}_i \qquad x:A \vdash B:\mathsf{Prop}}{\Pi x:A.B:\mathsf{Prop}}$$

■ Russell style

$$\frac{A: \mathsf{Prop}}{\mathsf{Prop}: \mathsf{Type}_1} \qquad \frac{A: \mathsf{Prop}}{A: \mathsf{Type}_0} \\ \frac{A: \mathsf{Type}_i \qquad x: A \vdash B: \mathsf{Prop}}{\Pi x: A.B: \mathsf{Prop}}$$

■ Tarski style

$$\begin{array}{ll} \frac{A:\mathsf{Prop}}{\mathsf{prop}:\mathsf{Type}_1} & \frac{A:\mathsf{Prop}}{\uparrow_{\mathsf{Prop}}A:\mathsf{Type}_0} \\ \frac{A:\mathsf{Type}_i & x:A \vdash B:\mathsf{Prop}}{\forall_i\,x:A.B:\mathsf{Prop}} \end{array}$$

Circularity:

- Prop is included in Type₀,
- which is included in Type₁,
- which is included in Type₂,
- ...
- all of which can be injected in Prop with a product!

Circularity:

- Prop is included in Type₀,
- which is included in Type₁,
- which is included in Type₂,
- ...
- all of which can be injected in Prop with a product!

Step-by-step construction does not work anymore!

Circularity:

- Prop is included in Type₀,
- which is included in Type₁,
- which is included in Type₂,
- ...
- all of which can be injected in Prop with a product!

Step-by-step construction does not work anymore!

Solution: Look at multiplicity of typing derivations.

Prop ambiguity 1

Ambiguity in the level of the argument type

$$\frac{A:\mathsf{Type}_i \qquad x:A \vdash B:\mathsf{Prop}}{\Pi x:A.B:\mathsf{Prop}} \qquad \forall_i \, x:A.B$$

$$\frac{A:\mathsf{Type}_i}{A:\mathsf{Type}_{i+1}} \qquad x:A \vdash B:\mathsf{Prop}$$

$$\frac{A:\mathsf{Type}_i}{\Pi x:A.B:\mathsf{Prop}} \qquad \forall_{i+1} \, x:\uparrow_i A.B$$

Prop ambiguity 2

Ambiguity in the level of the product

$$\begin{split} &\frac{A:\mathsf{Type}_i \qquad x:A \vdash B:\mathsf{Prop}}{\Pi x:A.B:\mathsf{Prop}} \\ &\frac{\Pi x:A.B:\mathsf{Type}_i}{\Pi x:A.B:\mathsf{Type}_i} & \uparrow_{\mathsf{Prop}}^{(i)} (\forall_i \, x:A.B) \\ &\frac{A:\mathsf{Type}_i \qquad \frac{x:A \vdash B:\mathsf{Prop}}{x:A \vdash B:\mathsf{Type}_i}}{\Pi x:A.B:\mathsf{Type}_i} & \pi_i \, x:A. \uparrow_{\mathsf{Prop}}^{(i)} B \end{split}$$

Prop equalities

Add equations

$$\forall_{i+1} \, x : \uparrow_i A.B \quad \equiv \quad \forall_i \, x : A.B$$

$$\uparrow_{\mathsf{Prop}}^{(i)} \left(\forall_i \, x : A.B \right) \quad \equiv \quad \pi_i \, x : A. \uparrow_{\mathsf{Prop}}^{(i)} B$$

Prop equalities

Add equations

$$\forall_{i+1} \ x : \uparrow_i A.B \quad \equiv \quad \forall_i \ x : A.B$$

$$\uparrow_{\mathsf{Prop}}^{(i)} (\forall_i \ x : A.B) \quad \equiv \quad \pi_i \ x : A. \uparrow_{\mathsf{Prop}}^{(i)} B$$

Theorem

If
$$\Gamma \vdash_{Russell} M: A$$
 then $\Gamma' \vdash_{Tarski} M': A'$ such that $|\Gamma'| = \Gamma, \ |M'| = M, \ |A'| = A.$

Uniform equalities

■ $s_1 \rightarrow s_2$ rules of the PTS

$$s_1 o \mathsf{Prop} = \mathsf{Prop} \qquad \mathsf{Prop} o s_2 = s_2 \qquad \mathsf{Type}_i o \mathsf{Type}_j = \mathsf{Type}_{\max(i,j)}$$

■ $s_1 \lor s_2$ join of the \subseteq relation

$$s_1 \vee \mathsf{Prop} = s_1 \qquad \mathsf{Prop} \vee s_2 = s_2 \qquad \mathsf{Type}_i \vee \mathsf{Type}_j = \mathsf{Type}_{\max(i,j)}$$

■ Single equality

$$\uparrow_{s_1 \rightarrow s_2}^{s_3 \rightarrow s_4} \left(\pi_{s_1,s_2} \, x : A.B \right) \quad \equiv \quad \pi_{s_1 \vee s_3,s_2 \vee s_4} \, x : \uparrow_{s_1}^{s_3} A. \uparrow_{s_2}^{s_4} B$$

Conversion

Judgmental equality

- Typed
- Could be undecidable

Computational equality

- Untyped
- Algorithmic aspect (e.g. based on reductions)
- Conditions for decidability (e.g. confluence + SN)

Conversion

Judgmental equality

- Typed
- Could be undecidable

Computational equality

- Untyped
- Algorithmic aspect (e.g. based on reductions)
- Conditions for decidability (e.g. confluence + SN)

Theorem (Herbelin and Siles 2012)

The two are equivalent for pure type systems.

Computational equality à la Tarski

To decide equivalence in the Tarski style, we can:

erase and use the Russell style,

Computational equality à la Tarski

To decide equivalence in the Tarski style, we can:

- erase and use the Russell style,
- or devise an algorithm working directly in the Tarski style,

Computational equality à la Tarski

To decide equivalence in the Tarski style, we can:

- erase and use the Russell style,
- or devise an algorithm working directly in the Tarski style,
- or even try to specify everything with reduction rules only.

Reduction rules

Operational semantics based on reductions

$$M \longrightarrow_{\beta} N$$

Transform equations into rewrite rules

$$\begin{array}{rcl} \mathsf{T}_{i+1}\left(\mathsf{type}_{i}\right) & \equiv & \mathsf{Type}_{i} \\ \mathsf{T}_{i}\left(\pi_{i}\,x:A.B\right) & \equiv & \Pi x:\mathsf{T}_{i}\left(A\right).\,\mathsf{T}_{i}\left(B\right) \\ \mathsf{T}_{i+1}\left(\uparrow_{i}\,A\right) & \equiv & \mathsf{T}_{i}\left(A\right) \end{array}$$

Reduction rules

Operational semantics based on reductions

$$M \longrightarrow_{\beta} N$$

Transform equations into rewrite rules

$$\begin{array}{cccc} \mathsf{T}_{i+1}\left(\mathsf{type}_{i}\right) & \longrightarrow & \mathsf{Type}_{i} \\ \mathsf{T}_{i}\left(\pi_{i}\,x:A.B\right) & \longrightarrow & \Pi x:\mathsf{T}_{i}\left(A\right).\,\mathsf{T}_{i}\left(B\right) \\ \mathsf{T}_{i+1}\left(\uparrow_{i}A\right) & \longrightarrow & \mathsf{T}_{i}\left(A\right) \end{array}$$

With Type

Distributing \uparrow_i is enough

$$\uparrow_i (\pi_i x : a.b) \equiv \pi_{i+1} x : \uparrow_i a. \uparrow_i b$$

With Type

Distributing \uparrow_i is enough

$$\uparrow_i (\pi_i x : a.b) \longrightarrow \pi_{i+1} x : \uparrow_i a. \uparrow_i b$$

With Prop

■ Distributing \uparrow_i breaks confluence because of the rule

$$\forall_{i+1} \, x : \uparrow_i A.B \longrightarrow \forall_i \, x : A.B$$

With Prop

■ Distributing \uparrow_i breaks confluence because of the rule

$$\forall_{i+1} \ x : \uparrow_i A.B \longrightarrow \forall_i \ x : A.B$$

■ Need to raise ↑ to the top

$$\begin{array}{ccccc} \uparrow_i \left(\pi_i \, x : a.b \right) & \longleftarrow & \pi_{i+1} \, x : \uparrow_i \, a. \uparrow_i \, b \\ & \forall_i \, x : A.B & \longleftarrow & \forall_{i+1} \, x : \uparrow_i \, A.B \\ \uparrow_{\mathsf{Prop}}^{(i)} \left(\forall_i \, x : A.B \right) & \longleftarrow & \pi_i \, x : A. \uparrow_{\mathsf{Prop}}^{(i)} \, B \end{array}$$

With Prop

■ Distributing \uparrow_i breaks confluence because of the rule

$$\forall_{i+1} \ x : \uparrow_i A.B \longrightarrow \forall_i \ x : A.B$$

■ Need to raise ↑ to the top

$$\begin{array}{ccccc} \uparrow_i \left(\pi_i \, x : a.b \right) & \longleftarrow & \pi_{i+1} \, x : \uparrow_i \, a. \uparrow_i \, b \\ & \forall_i \, x : A.B & \longleftarrow & \forall_{i+1} \, x : \uparrow_i \, A.B \\ \uparrow_{\mathsf{Prop}}^{(i)} \left(\forall_i \, x : A.B \right) & \longleftarrow & \pi_i \, x : A. \uparrow_{\mathsf{Prop}}^{(i)} \, B \end{array}$$

Corresponds to minimal typing!

What else is there?

Inductive types: No problem (Luo 1994)

- Add equations to ensure canonicity between codes at different levels,
- or use *uniform constructions* (a single code that can be lifted).

What else is there?

Inductive types: No problem (Luo 1994)

- Add equations to ensure canonicity between codes at different levels,
- or use uniform constructions (a single code that can be lifted).

Universe polymorphism:

- Need to handle algebraic universe expressions.
- Conversion based on reductions seems impossible (AC, idempotence).
- Need additional equations for polymorphic constants to ensure canonicity (constant definitions, inductive types, ...).

- 1 Motivation
- 2 Universes in Type Theory
- 3 From Russell to Tarski
- 4 Back to Coq
- 5 Conclusion

- Russell style = implicit, Tarski style = explicit
- lacktriangledown Tarski \Longrightarrow Russell **trivially**
- Tarski ← Russell only under proper conditions

Russell style:

- Implicit
- "'Informal"
- "Bad" properties:
 - Not syntax directed
 - No type uniqueness
 - No minimal type preservation
- Simple conversion

Tarski style:

- Explicit
- "Formal"
- All the usual "good" properties
- Simple conversion in ITT
- Equational theory more complex with Prop

Prop is as annoying as ever.

Prop is as annoying as ever.

Thanks!

References¹

Martin-Löf Intuitionistic type theory Bibliopolis Naples, 1984

E. Palmgren

On universes in type theory

In Twenty-five years of constructive type theory Oxford University Press, 1998

Z. Luo

Computation and Reasoning: A Type Theory for Computer Science, Oxford University Press, 1994

H. Herbelin and V. Siles

Pure Type System conversion is always typable In Journal of Functional Programming 22-02, 2012

A. Assaf

A Calculus of constructions with explicit subtyping submitted to Post-proceedings of TYPES 2014