Embedding logics in the $\lambda\Pi$ -calculus modulo rewriting

Ali Assaf Inria Paris-Rocquencourt (Deducteam) Ecole polytechnique

> Stockholm logic seminar October 21, 2014

Introduction

The framework

Embeddings in $\lambda \Pi$

Embeddings in $\lambda\Pi$ -calculus modulo rewriting

Soundness in the $\lambda\Pi$ -calculus modulo rewriting

Embedding pure type systems

Conclusion

Many different proof assistants:

- HOL Light
- Coq
- Mizar
- ▶ ...

Many different proof assistants:

- HOL Light
- Coq
- Mizar
- ► ...

Many different formalisms:

- Simple type theory
- Calculus of inductive constructions
- Set theory
- ▶ ...

A universal proof checker: Dedukti

A universal proof checker: Dedukti

A universal framework: the $\lambda\Pi$ -calculus modulo rewriting

Source: HOL, Coq, ...

- Pure type systems, inductive types, universes...
- Proof reconstruction, proof search, …

Target: Dedukti

- $\lambda \Pi$ -calculus modulo rewriting
- Proof checking (no proof reconstruction, no proof search, ...)

Introduction

The framework

Embeddings in $\lambda \Pi$

Embeddings in $\lambda\Pi$ -calculus modulo rewriting

Soundness in the $\lambda\Pi$ -calculus modulo rewriting

Embedding pure type systems

Conclusion

Deduction modulo

First-order logic modulo congruence

$$\frac{\Gamma \vdash A \qquad A \equiv B}{\Gamma \vdash B}$$

A theory is expressed by axioms + rewrite rules

Deduction modulo

First-order logic modulo congruence

$$\frac{\Gamma \vdash A \qquad A \equiv B}{\Gamma \vdash B}$$

A theory is expressed by axioms + rewrite rules

Example

The property

$$\forall x \forall y, s \, x = s \, y \iff x = y$$

can be expressed by the rewrite rule

$$s x = s y \longrightarrow x = y$$

Deduction modulo

First-order logic modulo congruence

$$\frac{\Gamma \vdash A \qquad A \equiv B}{\Gamma \vdash B}$$

A theory is expressed by axioms + rewrite rules

Example

The property

$$\forall x \forall y, s \, x = s \, y \iff x = y$$

can be expressed by the rewrite rule

$$s x = s y \longrightarrow x = y$$

Idea: replace axioms by rewrite rules

- Give computational meaning
- Preserve constructivism (disjunction & witness property)

From deduction modulo to $\lambda\Pi$ -modulo

Curry-Howard correspondence

- Propositions \longleftrightarrow types
- $\blacktriangleright \mathsf{Proofs} \longleftrightarrow \mathsf{terms}$

From deduction modulo to $\lambda\Pi$ -modulo

Curry-Howard correspondence

- Propositions \longleftrightarrow types
- $\blacktriangleright \mathsf{Proofs} \longleftrightarrow \mathsf{terms}$

Minimal first-order logic: $\lambda \Pi$ -calculus

- Congruence modulo β
- Implemented in Twelf

From deduction modulo to $\lambda\Pi$ -modulo

Curry-Howard correspondence

- Propositions \longleftrightarrow types
- $\blacktriangleright \mathsf{Proofs} \longleftrightarrow \mathsf{terms}$

Minimal first-order logic: $\lambda \Pi$ -calculus

- Congruence modulo β
- Implemented in Twelf

Minimal deduction modulo: $\lambda \Pi$ -calculus modulo rewriting

- Congruence modulo βR
- Implemented in Dedukti

The $\lambda\Pi$ -calculus modulo rewriting

An extension of the $\lambda\Pi\text{-calculus}$ with rewrite rules

- Typed λ-calculus (Curry-Howard correspondence)
- Dependent types
- Rewriting to express equivalence

The $\lambda\Pi$ -calculus modulo rewriting

An extension of the $\lambda\Pi$ -calculus with rewrite rules

- Typed λ-calculus (Curry-Howard correspondence)
- Dependent types
- Rewriting to express equivalence
- A variation of the logical framework of Martin-Löf
 - Equalities oriented into rewrite rules
 - Confluence + normalization \implies decidable checking
 - Efficient checking algorithm (Boespflug 2012, Saillard 2013)

Martin-Löf's logical framework

Type formation: A Type

 $\frac{A \text{ Type } B \text{ Type }}{A \times B \text{ Type }}$

Term formation (intro/elim): M : A

<i>M</i> : <i>A</i>	N : A
(<i>M</i> , <i>N</i>)	$: A \times B$
M: A imes B	M: A imes B
fst <i>M</i> : <i>A</i>	snd <i>M</i> : <i>B</i>

Martin-Löf's logical framework

Type equality: $A \equiv B$ $\mathsf{T}_{i+1} \, \mathsf{u}_i \equiv \mathsf{U}_i$

Term equality: $M \equiv N : A$

$$fst(M, N) \equiv M : A$$
 $snd(M, N) \equiv N : B$

Towards formalism

Variables:

explicit context Γ

Arities:

- currying $A_1 \rightarrow \ldots \rightarrow A_n \rightarrow B$
- kinds $A_1 \rightarrow \ldots \rightarrow A_n \rightarrow \mathbf{Type}$
- unifying terms and types

Syntax

sorts s ::= **Type** | **Kind** terms A, B, M, N ::= $x | s | \Pi x : A. B | \lambda x : A. M | M N$ contexts Γ ::= $\cdot | \Gamma, x : A$

Typing rules

$(x:A)\in \Gamma$	
$\Gamma \vdash x : A$	$\Gamma \vdash Type : Kind$
Г⊢А: Туре	$\Gamma, x : A \vdash B : s$
$\Gamma \vdash \Pi x$: A. B : s
$\Gamma \vdash A$: Туре	$\Gamma, x : A \vdash M : B$
$\Gamma \vdash \lambda x : A.$	М : Пх : А. В
$\Gamma \vdash M : \Pi x : A$	$B \Gamma \vdash N : A$
$\Gamma \vdash M N$	$: \{N/x\}B$
$\Gamma \vdash M : A \qquad \Gamma$	$\vdash B: s \qquad A \equiv B$
Г⊢	M : B

$(\Gamma) \ M \longrightarrow N$

$$(\Gamma) M \longrightarrow N$$

Restrictions:

▶ Subject reduction for $\longrightarrow_{\beta R}$: $\Gamma \vdash M : A$ and $\Gamma \vdash N : A$

$$(\Gamma) M \longrightarrow N$$

Restrictions:

- ▶ Subject reduction for $\longrightarrow_{\beta R}$: $\Gamma \vdash M : A$ and $\Gamma \vdash N : A$
- Confluence for →_{βR}: FV (N) ⊆ FV (M) + no divergent critical pair

$$(\Gamma) M \longrightarrow N$$

Restrictions:

- ▶ Subject reduction for $\longrightarrow_{\beta R}$: $\Gamma \vdash M : A$ and $\Gamma \vdash N : A$
- ► Confluence for $\longrightarrow_{\beta R}$: $FV(N) \subseteq FV(M)$ + no divergent critical pair
- Normalization for $\longrightarrow_{\beta R}$: ???

Summary

- $\lambda \Pi$ -calculus modulo = dependent types + rewrite rules
- Decidable type-checking under certain conditions

Introduction

The framework

Embeddings in $\lambda \Pi$

Embeddings in $\lambda\Pi$ -calculus modulo rewriting

Soundness in the $\lambda\Pi$ -calculus modulo rewriting

Embedding pure type systems

Conclusion

Using $\lambda \Pi$ as a logical framework

Logical framework in Wikipedia:

In logic, a logical framework provides a means to define (or present) a logic as a signature in a higher-order type theory in such a way that provability of a formula in the original logic reduces to a type inhabitation problem in the framework type theory.

Using $\lambda \Pi$ as a logical framework

Logical framework in Wikipedia:

In logic, a logical framework provides a means to define (or present) a logic as a signature in a higher-order type theory in such a way that provability of a formula in the original logic reduces to a type inhabitation problem in the framework type theory.

To embed a given theory X in $\lambda \Pi$, one must:

- 1. define a signature context Σ in $\lambda \Pi$ describing the theory X
- 2. define a *translation* from the terms of X to the terms of $\lambda \Pi$ in the context Σ .

System F in $\lambda\Pi$

Define the signature context $\boldsymbol{\Sigma}$ as:

type	:	Туре
arrow	:	$type \to type \to type$
forall	:	(type o type) o type

term	:	$type \to \mathbf{Type}$
lam	:	$(\operatorname{term} A \to \operatorname{term} B) \to \operatorname{term} (\operatorname{arrow} A B)$
арр	:	$term(arrow AB) \to term A \to term B$
Lam	:	$(\Pi A : type.term(FA)) \to term(forallF)$
Арр	:	term (forall F) $ ightarrow \Pi A$: type. term (F A)

System F in $\lambda\Pi$

Translate the types and the terms as:

$$\begin{aligned} & [\alpha] &= \alpha \\ & [A \to B] &= \operatorname{arrow} [A] [B] \\ & [\forall \alpha : \mathsf{Type.} B] &= \operatorname{forall} (\lambda \alpha : \mathsf{type.} [B]) \end{aligned}$$

$$[x] = x$$

$$[\lambda x : A. M] = \text{lam} (\lambda x : \text{term} [A]. [M])$$

$$[M N] = \text{app} [M] [N]$$

$$[\Lambda \alpha : \textbf{Type.} M] = \text{Lam} (\lambda \alpha : \text{type.} [M])$$

$$[M \langle A \rangle] = \text{App} [M] [A]$$

Example

The identity function $id = \Lambda \alpha$: **Type**. $\lambda x : \alpha . x$ is translated as:

$$[\mathsf{id}] = \mathsf{Lam} \left(\lambda \alpha : \mathsf{type.} \, \mathsf{lam} \left(\lambda x : \mathsf{term} \, \alpha. \, x \right) \right)$$

The type $A = \forall \alpha : \mathbf{Type.} \ \alpha \to \alpha$ is translated as:

$$[A] = forall (\lambda lpha : type. arrow lpha lpha)$$

Completeness

If *M* is well-typed then [M] is well-typed in the context Σ :

 $\vdash M : A \implies \Sigma \vdash [M] : \operatorname{term}[A]$

Completeness

If *M* is well-typed then [M] is well-typed in the context Σ :

 $\vdash M : A \implies \Sigma \vdash [M] : term [A]$ Define $\llbracket A \rrbracket = term [A]$:

$$\vdash M : A \implies \Sigma \vdash [M] : \llbracket A \rrbracket$$

Completeness

If *M* is well-typed then [M] is well-typed in the context Σ :

$$\vdash M : A \implies \Sigma \vdash [M] : \text{term}[A]$$

Define $\llbracket A \rrbracket = \text{term} [A]$:

$$\vdash M : A \implies \Sigma \vdash [M] : \llbracket A \rrbracket$$

If *M* is well-typed in Γ then [*M*] is well-typed in the context Σ , $\llbracket \Gamma \rrbracket$:

$$\Gamma \vdash M : A \implies \Sigma, \llbracket \Gamma \rrbracket \vdash [M] : \llbracket A \rrbracket$$

Example

The self-application of id is well-typed in the empty context:

 $\vdash \mathsf{id} \langle A \rangle \mathsf{id} : A$

Its translation is well-typed in Σ :

 $\Sigma \vdash \mathsf{app}\,(\mathsf{App}\,[\mathsf{id}]\,\llbracket A \rrbracket)\,[\mathsf{id}]:\llbracket A \rrbracket$

 If *M* is a proof of (has type) *A* in *X* then [*M*] is a proof of (has type) [[*A*]] in λΠ.

- If *M* is a proof of (has type) *A* in *X* then [*M*] is a proof of (has type) [[*A*]] in λΠ.
- If A is provable (is inhabited) in X then [[A]] is provable (is inhabited) in λΠ.

- If M is a proof of (has type) A in X then [M] is a proof of (has type) [A] in λΠ.
- If A is provable (is inhabited) in X then [[A]] is provable (is inhabited) in λΠ.
- If X is inconsistent (every A is inhabited) then λΠ is inconsistent (every [[A]] is inhabited).

- If M is a proof of (has type) A in X then [M] is a proof of (has type) [A] in λΠ.
- If A is provable (is inhabited) in X then [[A]] is provable (is inhabited) in λΠ.
- If X is inconsistent (every A is inhabited) then λΠ is inconsistent (every [[A]] is inhabited).

What about the converse?

1. **Consistency:** if X is consistent then $\lambda \Pi$ is consistent.

Soundness

- 1. **Consistency:** if X is consistent then $\lambda \Pi$ is consistent.
- 2. **Conservativity:** if $\llbracket A \rrbracket$ is provable in $\lambda \Pi$ then A is provable in X.

Soundness

- 1. **Consistency:** if X is consistent then $\lambda \Pi$ is consistent.
- Conservativity: if [[A]] is provable in λΠ then A is provable in X.
- 3. Adequacy: every (normal) proof in $\lambda \Pi$ corresponds to a proof in X.

Soundness

- 1. **Consistency:** if X is consistent then $\lambda \Pi$ is consistent.
- Conservativity: if [[A]] is provable in λΠ then A is provable in X.
- 3. Adequacy: every (normal) proof in $\lambda \Pi$ corresponds to a proof in X.

These are important properties for a logical framework!

Summary

- Source = X, Target = $\lambda \Pi$
- **Embedding** = signature Σ + translation [·]
- **Completeness** = typing in $X \implies$ typing in $\lambda \Pi$
- **Soundness** = typing in $\lambda \Pi \implies$ typing in X

Introduction

The framework

Embeddings in $\lambda \Pi$

Embeddings in $\lambda\Pi$ -calculus modulo rewriting

Soundness in the $\lambda\Pi$ -calculus modulo rewriting

Embedding pure type systems

Conclusion

The embedding does not preserve term (proof) reduction :

$$M \longrightarrow^* M' \implies [M] \longrightarrow^* [M']$$

The embedding does not preserve term (proof) reduction :

$$M \longrightarrow^* M' \implies [M] \longrightarrow^* [M']$$

The embedding does not preserve term (proof) equivalence:

$$M \equiv M' \implies [M] \equiv [M']$$

Systems with dependent types (e.g. the calculus of constructions) have a conversion rule:

$$\frac{\Gamma \vdash M : A \qquad A \equiv B}{\Gamma \vdash M : B}$$

In $\lambda\Pi$, $\llbracket\Gamma\rrbracket \vdash [M] : \llbracketA\rrbracket$ but $\llbracket\Gamma\rrbracket \not\vdash [M] : \llbracketB\rrbracket$ (no completeness).

Conversion in $\lambda \Pi$

Approach 1: Introduce explicit equivalence judgements and a conversion term:

equiv	:	$type \to type \to \mathbf{Type}$
refl	:	equiv <i>M M</i>
beta	:	$\operatorname{equiv}\left(\operatorname{app}\left(\operatorname{lam} F\right)N\right)(FN)$
• • •		
conv	:	$term A \to equiv AB \to term B$

Cons:

- Need to explicitely give the equivalence derivations.
- Adding conv pollutes the structure of the terms and needs to be taken care of in the equivalence relation.

Conversion in $\lambda \Pi$

Approach 2: Translate typing derivations instead of λ -terms

term : **Type** lam : $(term \rightarrow term) \rightarrow term$... hastype : term \rightarrow type \rightarrow **Type** typelam : $(\Pi x : term. hastype x A \rightarrow hastype (F x) B) \rightarrow$ hastype (lam F) (arrow A B)

Pros:

. . .

 \blacktriangleright conv does not interfere with the structure of the $\lambda\text{-terms}.$ Cons:

- Lose Curry-Howard correspondence?
- Still need to explicitely give the equivalence derivations.

Idea: extend the conversion rule of the $\lambda\Pi$ -calculus with a rewrite system *R*:

$$\frac{\Gamma \vdash M : A \qquad \Gamma \vdash B : \mathbf{Type} \qquad A \equiv_{\beta R} B}{\Gamma \vdash M : B}$$

Idea: extend the conversion rule of the $\lambda\Pi$ -calculus with a rewrite system *R*:

$$\frac{\Gamma \vdash M : A \qquad \Gamma \vdash B : \mathbf{Type} \qquad A \equiv_{\beta R} B}{\Gamma \vdash M : B}$$

Add rewrite rules so that the translation preserves reduction.

Idea: extend the conversion rule of the $\lambda\Pi$ -calculus with a rewrite system *R*:

$$\frac{\Gamma \vdash M : A \qquad \Gamma \vdash B : \mathbf{Type} \qquad A \equiv_{\beta R} B}{\Gamma \vdash M : B}$$

Add rewrite rules so that the translation preserves reduction (in addition to binding and typing).

Signature context Σ :

- $\begin{array}{rll} \mathsf{type} & : & \textbf{Type} \\ \mathsf{arrow} & : & \mathsf{type} \to \mathsf{type} \to \mathsf{type} \end{array}$
 - term : type \rightarrow **Type** lam : (term $A \rightarrow$ term B) \rightarrow term (arrow AB) app : term (arrow AB) \rightarrow term $A \rightarrow$ term B

Rewrite rules R:

$$\operatorname{app}(\operatorname{lam} F) N \longrightarrow F N$$

Signature context Σ :

- type : **Type** arrow : type \rightarrow type \rightarrow type
 - term : type \rightarrow **Type** lam : (term $A \rightarrow$ term B) \rightarrow term (arrow AB) app : term (arrow AB) \rightarrow term $A \rightarrow$ term B

Rewrite rules R:

term (arrow AB) \longrightarrow term $A \rightarrow$ term Blam $F \longrightarrow F$ app $MN \longrightarrow MN$

Signature context Σ :

 $\begin{array}{rll} \mathsf{type} & : & \mathbf{Type} \\ \mathsf{arrow} & : & \mathsf{type} \to \mathsf{type} \to \mathsf{type} \end{array}$

term : type \rightarrow **Type**

Rewrite rules R:

term (arrow AB) \longrightarrow term $A \rightarrow$ term B

Translation:

$$\begin{bmatrix} \lambda x : A. M \end{bmatrix} = \lambda x : \llbracket A \rrbracket. \llbracket M \end{bmatrix}$$
$$\begin{bmatrix} M N \end{bmatrix} = \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} M \end{bmatrix}$$

Theorem If $M \longrightarrow M'$ then $[M] \longrightarrow^+ [M']$.

Theorem If $M \longrightarrow M'$ then $[M] \longrightarrow^+ [M']$. Corollary If $M \longrightarrow^* M'$ then $[M] \longrightarrow^* [M']$.

Theorem If $M \longrightarrow M'$ then $[M] \longrightarrow^+ [M']$. Corollary If $M \longrightarrow^* M'$ then $[M] \longrightarrow^* [M']$. Corollary If $M \equiv M'$ then $[M] \equiv [M']$.

Recovered typing preservation.

Theorem (Cousineau & Dowek 2007) If $\Gamma \vdash M : A$ then Σ , $\llbracket \Gamma \rrbracket \vdash [M] : \llbracket A \rrbracket$.

Works for any functional pure type system:

- System F
- Calculus of constructions
- Simple type theory

Recovered typing preservation.

Theorem (Cousineau & Dowek 2007) If $\Gamma \vdash M : A$ then $\Sigma, \llbracket \Gamma \rrbracket \vdash [M] : \llbracket A \rrbracket$.

Works for any functional pure type system:

- System F
- Calculus of constructions
- Simple type theory

What about soundness?

Link between termination and soundness:

• $\lambda \Pi$ is strongly normalizing

- $\lambda \Pi$ is strongly normalizing
- Adding axioms (Σ) does not influence termination

- $\lambda \Pi$ is strongly normalizing
- Adding axioms (Σ) does not influence termination
- Can be used to show soundness:
 - ▶ **Consistency:** there is no normal term of type [[⊥]]

- $\lambda \Pi$ is strongly normalizing
- Adding axioms (Σ) does not influence termination
- Can be used to show soundness:
 - Consistency: there is no normal term of type $[\![\bot]\!]$
 - Adequacy: if $\llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$ and M is a normal form, then M = [N] for some N such that $\Gamma \vdash N : A$

- $\lambda \Pi$ is strongly normalizing
- Adding axioms (Σ) does not influence termination
- Can be used to show soundness:
 - ▶ **Consistency:** there is no normal term of type [[⊥]]
 - Adequacy: if $\llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$ and M is a normal form, then M = [N] for some N such that $\Gamma \vdash N : A$
 - Conservativity: if [[Γ]] ⊢ M : [[A]] then M reduces to a normal form [N] for some N such that Γ ⊢ N : A.

Adding rewrite rules (R) can break strong normalization:

• because \longrightarrow_R does not terminate

Adding rewrite rules (R) can break strong normalization:

- because \longrightarrow_R does not terminate
- or because $\longrightarrow_R \cup \longrightarrow_\beta$ does not terminate

Adding rewrite rules (R) can break strong normalization:

- because \longrightarrow_R does not terminate
- or because $\longrightarrow_R \cup \longrightarrow_\beta$ does not terminate
- or even because \longrightarrow_{β} does not terminate for well-typed terms

Adding rewrite rules (R) can break strong normalization:

- because \longrightarrow_R does not terminate
- or because $\longrightarrow_R \cup \longrightarrow_\beta$ does not terminate

• or even because \longrightarrow_{β} does not terminate for well-typed terms Need to find other solutions.

Summary

- $\lambda \Pi$ embeddings do not preserve reduction.
- Obstacle for embedding theories with dependent types.
- Adding rewrite rules to $\lambda \Pi$ helps recover completeness...
- ... but can break soundness.

Introduction

The framework

Embeddings in $\lambda \Pi$

Embeddings in $\lambda\Pi$ -calculus modulo rewriting

Soundness in the $\lambda\Pi\text{-calculus}$ modulo rewriting

Embedding pure type systems

Conclusion

Idea: build a model for $\lambda \Pi / X$

- in the algebra of reducibility candidates
- or in a general notion of Π-algebra.

Idea: build a model for $\lambda \Pi / X$

- in the algebra of reducibility candidates
- or in a general notion of Π-algebra.

The model implies strong normalization of $\lambda \Pi / X$. Use this to prove soundness (consistency, adequacy, conservativity).

Idea: build a model for $\lambda \Pi / X$

- in the algebra of reducibility candidates
- or in a general notion of Π-algebra.

The model implies strong normalization of $\lambda \Pi / X$. Use this to prove soundness (consistency, adequacy, conservativity).

Theorem (Dowek 2014)

There is a model for $\lambda \Pi / \mathbb{STT}$ and for $\lambda \Pi / \mathbb{COC}$.

Idea: build a model for $\lambda \Pi / X$

- in the algebra of reducibility candidates
- or in a general notion of Π-algebra.

The model implies strong normalization of $\lambda \Pi / X$. Use this to prove soundness (consistency, adequacy, conservativity).

Theorem (Dowek 2014)

There is a model for $\lambda \Pi / \mathbb{STT}$ and for $\lambda \Pi / \mathbb{COC}$.

Problem: implies strong normalization in X, so at least as hard to prove as strong normalization in X.

If $\llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$, what can we say about M?

If $\llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$, what can we say about M?

Example

If X is the simply-typed λ -calculus, the polymorphic identity function is not well-typed:

 β : **Type** \nvDash ($\lambda \alpha$: **Type**. $\lambda x : \alpha . x$) $\beta : \beta \to \beta$

It is well-typed in $\lambda \Pi / X$:

 β : type \vdash ($\lambda \alpha$: type. λx : term α . x) β : term $\beta \rightarrow$ term β

If $\llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$, what can we say about M?

Example

If X is the simply-typed λ -calculus, the polymorphic identity function is not well-typed:

$$\beta$$
 : **Type** \nvDash ($\lambda \alpha$: **Type**. $\lambda x : \alpha . x$) $\beta : \beta \to \beta$

It is well-typed in $\lambda \Pi / X$:

 $\beta:\mathsf{type}\vdash(\lambda\alpha:\mathsf{type},\lambda x:\mathsf{term}\,\alpha.\,x)\,\beta:\mathsf{term}\,\beta\to\mathsf{term}\,\beta$

But it reduces to λx : term $\beta . x = [\lambda x : \beta . x]$, a term that is well-typed in X.

If $\llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$, what can we say about M?

Example

If X is the simply-typed λ -calculus, the polymorphic identity function is not well-typed:

$$\beta$$
 : **Type** \nvDash ($\lambda \alpha$: **Type**. $\lambda x : \alpha . x$) $\beta : \beta \to \beta$

It is well-typed in $\lambda \Pi / X$:

 β : type \vdash ($\lambda \alpha$: type. λx : term α . x) β : term $\beta \rightarrow$ term β

But it reduces to λx : term β . $x = [\lambda x : \beta . x]$, a term that is well-typed in X. Idea: reduce only what is necessary.

Erasure

Define an erasure from $\lambda \Pi / X$ to X:

$$|x| = x$$

$$|\lambda x : A. M| = \lambda x : ||A||. |M|$$

$$|M N| = |M| |N|$$

$$\|\text{type}\| = \text{Type}$$

 $\|\text{term } A\| = |A|$
 $\|A \rightarrow B\| = \|A\| \rightarrow \|B|$

Erasure is the inverse of the translation:

$$|[M]| = M$$
$$||[A]]| = A$$

What statement should we prove?

▶ If $\llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$ in $\lambda \Pi / X$ then $\Gamma \vdash |M| : A$ in X?

What statement should we prove?

• If
$$\llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$$
 in $\lambda \Pi / X$ then $\Gamma \vdash |M| : A$ in X ?

 $\beta:\mathsf{type}\vdash(\lambda\alpha:\mathsf{type},\lambda x:\mathsf{term}\,\alpha.\,x)\,\beta:\mathsf{term}\,\beta\to\mathsf{term}\,\beta$

What statement should we prove?

► If
$$\llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$$
 in $\lambda \Pi / X$ then $\Gamma \vdash |M| : A$ in X?

 $\beta:\mathsf{type}\vdash(\lambda\alpha:\mathsf{type},\lambda x:\mathsf{term}\,\alpha.\,x)\,\beta:\mathsf{term}\,\beta\to\mathsf{term}\,\beta$

▶ If $\llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$ in $\lambda \Pi / X$ then $M \longrightarrow^* M'$ such that $\Gamma \vdash |M'| : A$ in X?

What statement should we prove?

► If
$$\llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$$
 in $\lambda \Pi / X$ then $\Gamma \vdash |M| : A$ in X ?

 $\beta:\mathsf{type}\vdash\big(\lambda\alpha:\mathsf{type}.\,\lambda x:\mathsf{term}\,\alpha.\,x\big)\,\beta:\mathsf{term}\,\beta\to\mathsf{term}\,\beta$

► If
$$\llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$$
 in $\lambda \Pi / X$ then $M \longrightarrow^* M'$ such that
 $\Gamma \vdash |M'| : A$ in X ?

$$\frac{\llbracket \Gamma \rrbracket \vdash M : \Pi X : A. \llbracket B \rrbracket \qquad \llbracket \Gamma \rrbracket \vdash N : A}{\llbracket \Gamma \rrbracket \vdash M N : \llbracket B \rrbracket$$

What statement should we prove?

► If $\llbracket \Gamma \rrbracket \vdash M : A \text{ in } \lambda \Pi / X \text{ then } M \longrightarrow^* M' \text{ and } A \longrightarrow^* A' \text{ such that } \Gamma \vdash |M'| : ||A'|| \text{ in } X?$

What statement should we prove?

► If $\llbracket \Gamma \rrbracket \vdash M : A \text{ in } \lambda \Pi / X \text{ then } M \longrightarrow^* M' \text{ and } A \longrightarrow^* A' \text{ such that } \Gamma \vdash |M'| : \|A'\| \text{ in } X?$ $\frac{\llbracket \Gamma \rrbracket, x : A \vdash M : B}{\llbracket \Gamma \rrbracket \vdash \lambda x : A. M : \Pi x : A. B}$

What statement should we prove?

- ► If $\llbracket \Gamma \rrbracket \vdash M : A \text{ in } \lambda \Pi / X \text{ then } M \longrightarrow^* M' \text{ and } A \longrightarrow^* A' \text{ such that } \Gamma \vdash |M'| : ||A'|| \text{ in } X?$ $\frac{\llbracket \Gamma \rrbracket, x : A \vdash M : B}{\llbracket \Gamma \rrbracket \vdash \lambda x : A. M : \Pi x : A. B}$
- ► If $\Gamma \vdash M : A$ in $\lambda \Pi / X$ then $\Gamma \longrightarrow^* \Gamma'$, $M \longrightarrow^* M'$, and $A \longrightarrow^* A'$ such that $\|\Gamma'\| \vdash |M'| : \|A'\|$ in X?

What statement should we prove?

- ► If $\llbracket \Gamma \rrbracket \vdash M : A \text{ in } \lambda \Pi / X \text{ then } M \longrightarrow^* M' \text{ and } A \longrightarrow^* A' \text{ such that } \Gamma \vdash |M'| : ||A'|| \text{ in } X?$ $\frac{\llbracket \Gamma \rrbracket, x : A \vdash M : B}{\llbracket \Gamma \rrbracket \vdash \lambda x : A. M : \Pi x : A. B}$
- ► If $\Gamma \vdash M : A$ in $\lambda \Pi / X$ then $\Gamma \longrightarrow^* \Gamma', M \longrightarrow^* M'$, and $A \longrightarrow^* A'$ such that $\|\Gamma'\| \vdash |M'| : \|A'\|$ in X?

 $\vdash \lambda \alpha$: type. λx : term α . x : $\Pi \alpha$: type. term $\beta \rightarrow \text{term } \beta$

What have we learned?

- 1. $\lambda \Pi / X$ can type more terms than X.
- 2. These terms can be used to construct proofs for the translation of *X* types.
- 3. The $\lambda \Pi / X$ terms that inhabit the translation of X types can be reduced to the translation of X terms.

What have we learned?

- 1. $\lambda \Pi / X$ can type more terms than X.
- 2. These terms can be used to construct proofs for the translation of *X* types.
- 3. The $\lambda \Pi / X$ terms that inhabit the translation of X types can be reduced to the translation of X terms.

Need higher-order reasonning.

Let Γ' be a context in X. Define the predicate $\Gamma' \vDash M : A$ by induction on A:

Let Γ' be a context in X. Define the predicate $\Gamma' \vDash M : A$ by induction on A:

► If A = type then $\Gamma' \vDash M : A$ when $M \longrightarrow^* M'$ such that $\Gamma' \vdash |M'| :$ **Type**.

Let Γ' be a context in X. Define the predicate $\Gamma' \vDash M : A$ by induction on A:

- ▶ If A = type then $\Gamma' \vDash M : A$ when $M \longrightarrow^* M'$ such that $\Gamma' \vdash |M'| :$ **Type**.
- ▶ If A = term B then $\Gamma' \vDash M : A$ when $M \longrightarrow^* M'$ and $B \longrightarrow^* B'$ such that $\Gamma' \vdash |M'| : |B'|$.

Let Γ' be a context in X. Define the predicate $\Gamma' \vDash M : A$ by induction on A:

- ► If A = type then $\Gamma' \vDash M : A$ when $M \longrightarrow^* M'$ such that $\Gamma' \vdash |M'| :$ **Type**.
- ▶ If A = term B then $\Gamma' \vDash M : A$ when $M \longrightarrow^* M'$ and $B \longrightarrow^* B'$ such that $\Gamma' \vdash |M'| : |B'|$.
- ▶ If $A = \prod x : B$. *C* then $\Gamma' \models M : A$ when for for all *N* such that $\Gamma' \models N : B$, $\Gamma' \models M N : \{N/x\} C$.

Let Γ' be a context in X. Define the predicate $\Gamma' \vDash M : A$ by induction on A:

- ► If A = type then $\Gamma' \vDash M : A$ when $M \longrightarrow^* M'$ such that $\Gamma' \vdash |M'| :$ **Type**.
- ▶ If A = term B then $\Gamma' \vDash M : A$ when $M \longrightarrow^* M'$ and $B \longrightarrow^* B'$ such that $\Gamma' \vdash |M'| : |B'|$.
- ▶ If $A = \prod x : B$. *C* then $\Gamma' \models M : A$ when for for all *N* such that $\Gamma' \models N : B$, $\Gamma' \models M N : \{N/x\} C$.

If σ is a substitution mapping variables to terms:

• $\Gamma' \vDash \sigma : \Gamma$ when $\Gamma' \vDash \sigma(x) : \sigma(A)$ for all $(x : A) \in \Gamma$

Soundness

Theorem (Assaf 2013)

If $\Gamma \vdash M : A$ in $\lambda \Pi / X$ then for any X context Γ' and substitution σ such that $\Gamma' \models \sigma : \Gamma$, $\Gamma' \models \sigma(M) : \sigma(A)$.

Proof.

By induction on the derivation of $\Gamma \vdash M : A$.

Soundness

Theorem (Assaf 2013)

If $\Gamma \vdash M : A$ in $\lambda \Pi / X$ then for any X context Γ' and substitution σ such that $\Gamma' \vDash \sigma : \Gamma$, $\Gamma' \vDash \sigma(M) : \sigma(A)$.

Proof.

By induction on the derivation of $\Gamma \vdash M : A$.

Corollary (Conservativity)

```
If \llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket then M \longrightarrow^* M' such that \Gamma \vdash |M'| : A.
```

Proof.

By taking the identity substitution, $\|\sigma(\llbracket A \rrbracket)\| = \|\llbracket A \rrbracket\| = A$.

Relative normalization

- Avoid complex techniques such as reducibility candidates.
- Works for non-terminating theories!
- For pure type systems, λΠ/X corresponds to a conservative completion of X.

Summary

- Strong normalization = all terms in λΠ/X are strongly normalizing
 - Proved using termination models
- **Relative normalization** = terms in $\lambda \Pi / X$ can be reduced to terms in *X*.
 - Proved by using reducibility on a more general statement
- Both approaches show conservativity of $\lambda \Pi / X$

Introduction

The framework

Embeddings in $\lambda \Pi$

Embeddings in $\lambda\Pi$ -calculus modulo rewriting

Soundness in the $\lambda\Pi$ -calculus modulo rewriting

Embedding pure type systems

Conclusion

Pure type systems

Specification S = (S, A, R)

- S a set of sorts
- $\mathcal{A} \subseteq \mathcal{S} \times \mathcal{S}$ a set of *axioms*
- $\mathcal{R} \subseteq S \times S \times S$ a set of *rules*

Syntax

sortss \in StermsM, N, A, B::= $x \mid s \mid \Pi x : A. B \mid \lambda x : A. M \mid M N$ contexts Γ ::= $\cdot \mid \Gamma, x : A$

Typing rules

 $\frac{(x:A) \in \Gamma}{\Gamma \vdash x:A} \qquad \frac{(s_1, s_2) \in \mathcal{A}}{\Gamma \vdash s_1: s_2}$ $\Gamma \vdash A : s_1$ $\Gamma, x : A \vdash B : s_2$ $(s_1, s_2, s_3) \in \mathcal{R}$ $\Gamma \vdash \Pi x : A.B : s_3$ $\Gamma \vdash \Pi x : A.B : s \qquad \Gamma, x : A \vdash M : B$ $\Gamma \vdash \lambda x : A, M : \Pi x : A, B$ $\Gamma \vdash M : \Pi x : A \cdot B \qquad \Gamma \vdash N : A$ $\Gamma \vdash MN : \{N/x\}B$ $\Gamma \vdash M : A \qquad \Gamma \vdash B : s \qquad A \equiv B$ $\Gamma \vdash M : B$

Example

Example

The calculus of constructions (COC) is the PTS defined by the signature:

 $\mathcal{S} \hspace{0.1 cm} = \hspace{0.1 cm} \textbf{Type}, \textbf{Kind}$

$$\mathcal{A} = (\mathsf{Type}, \mathsf{Kind})$$

$$\begin{aligned} \mathcal{R} &= (\mathsf{Type},\mathsf{Type},\mathsf{Type}), (\mathsf{Kind},\mathsf{Type},\mathsf{Type}), \\ & (\mathsf{Type},\mathsf{Kind},\mathsf{Kind}), (\mathsf{Kind},\mathsf{Kind},\mathsf{Kind}) \end{aligned}$$

The polymorphic identity function $id = (\lambda \alpha : Type. \lambda x : \alpha. x)$ is well-typed in COC:

$$\vdash$$
 id : ($\Pi \alpha$: **Type**. $\alpha \rightarrow \alpha$)

Example

Example

Simple type theory is (STT) is the PTS defined by the signature:

- $\mathcal{S} \ = \ \mathbf{Prop}, \mathbf{Type}, \mathbf{Kind}$
- $\mathcal{A} = (\mathsf{Prop}, \mathsf{Type})(\mathsf{Type}, \mathsf{Kind})$
- $\mathcal{R} = (Prop, Prop, Prop), (Type, Prop, Prop), (Type, Type, Type)$

Translations

- $\lambda \Pi$ -calculus: types may only depend on terms
- PTS: terms and types may depend on types (polymorphism, type operators)

Translations

- $\lambda \Pi$ -calculus: types may only depend on terms
- PTS: terms and types may depend on types (polymorphism, type operators)

Tarski style universes (Palmgren 1988): two representations

- [A] as a term
- [[A]] as a type

Two Translations

As a type:

 \blacktriangleright $[\![s]\!] = \mathsf{U}_{s},$ the symbol for the universe of types s

$$\bullet \ \llbracket \Pi x : A. B \rrbracket = \Pi x : \llbracket A \rrbracket. \llbracket B \rrbracket$$

Two Translations

As a type:

- $[\![s]\!] = \mathsf{U}_s$, the symbol for the universe of types s
- $\blacktriangleright \ \llbracket \Pi x : A. B \rrbracket = \Pi x : \llbracket A \rrbracket. \llbracket B \rrbracket$

As a term:

- $[s] = u_s$, a constant
- $[\Pi x : A. B] = \pi [A] (\lambda x : [A]. [B])$

Decoding function T

 $\llbracket A \rrbracket = \mathsf{T} \left[A \right]$

Decoding function T

$$\llbracket A \rrbracket = \mathsf{T} \left[A \right]$$

Constraints:

$$\llbracket s \rrbracket = U_s$$
$$\llbracket \Pi x : A. B \rrbracket = \Pi x : \llbracket A \rrbracket. \llbracket B \rrbracket$$

Decoding function T

$$\llbracket A \rrbracket = \mathsf{T} \left[A \right]$$

Constraints:

$$T[s] = U_s$$

$$T[(\Pi x : A. B)] = \Pi x : T A. T B$$

Decoding function T

$$\llbracket A \rrbracket = \mathsf{T} \left[A \right]$$

Constraints:

$$\begin{array}{ccc} \mathsf{T}\,\mathsf{u}_s & \longrightarrow & \mathsf{U}_s \\ \mathsf{T}\,(\pi\,A\,B) & \longrightarrow & \mathsf{\Pi}x:\mathsf{T}\,A.\,\mathsf{T}\,(B\,x) \end{array}$$

The embedding

Constants

 $\begin{array}{lll} \mathsf{U}_{s} & : & \mathsf{Type} & \forall s \in \mathcal{S} \\ \mathsf{T}_{s} & : & \mathsf{U}_{s} \to \mathsf{Type} & \forall s \in \mathcal{S} \\ \mathsf{u}_{s_{1}} & : & \mathsf{U}_{s_{2}} & \forall (s_{1}, s_{2}) \in \mathcal{A} \\ \pi_{s_{1}, s_{2}, s_{3}} & : & \mathsf{\Pi}\alpha : \mathsf{U}_{s_{1}}.(\mathsf{T}_{s_{1}} \alpha \to \mathsf{U}_{s_{2}}) \to \mathsf{U}_{s_{3}} & \forall (s_{1}, s_{2}, s_{3}) \in \mathcal{R} \end{array}$

Rewrite rules

 $\begin{array}{cccc} \mathsf{T}_{s_2}\,\dot{s}_1 & \longrightarrow & s_1 & \forall (s_1,s_2) \in \mathcal{A} \\ \mathsf{T}_{s_3}\,(\pi_{s_1,s_2,s_3}\,\alpha\,\beta) & \longrightarrow & \mathsf{\Pi} x:\mathsf{T}_{s_1}\,\alpha.\,\mathsf{T}_{s_2}\,(\beta\,x) & \forall (s_1,s_2,s_3) \in \mathcal{R} \end{array}$

The embedding

$$[x] = x$$

$$[s] = u_s$$

$$[\Pi x : A. B] = \pi_{s_1, s_2, s_3} [A] [B]$$

$$[\lambda x : A. M] = \lambda x : [A]. [M]$$

$$[M N] = [M] [N]$$

$$\begin{bmatrix} s \end{bmatrix} = U_s$$
$$\begin{bmatrix} \Pi x : A . B \end{bmatrix} = \Pi x : \llbracket A \rrbracket . \llbracket B \rrbracket$$
$$\llbracket A \rrbracket = \mathsf{T}_s [A]$$

Infinite universe hierarchy

In MLTT, Coq, Agda:

 $\mathsf{U}_0:\mathsf{U}_1:\mathsf{U}_2:\ldots$

Infinite universe hierarchy

In MLTT, Coq, Agda:

 $U_0:U_1:U_2:\ldots$

In $\lambda\Pi$ -calculus modulo:

Ui	:	Туре	$\forall i \in \mathbb{N}$
T_i	:	$U_i o \mathbf{Type}$	$\forall i \in \mathbb{N}$
u;	:	U_{i+1}	$\forall i \in \mathbb{N}$
π_i	:	$\Pi \alpha : U_i. ((T_i \alpha \to U_i)) \to U_i$	$\forall i \in \mathbb{N}$

Infinite universe hierarchy

In MLTT, Coq, Agda:

 $U_0:U_1:U_2:\ldots$

In $\lambda\Pi$ -calculus modulo:

- $\mathsf{U} \quad : \quad \mathsf{nat} \to \mathbf{Type}$
- $T : \Pi i : nat. U i \rightarrow Type$
- u : Πi : nat. U (i + 1)
- $\pi : \Pi i : \mathsf{nat.} \Pi \alpha : \mathsf{U} i. ((\mathsf{T} i \alpha \to \mathsf{U} i)) \to \mathsf{U} i$

Cumulativity

In MLTT, Coq:

 $\frac{\Gamma \vdash A : \mathsf{U}_i}{\Gamma \vdash A : \mathsf{U}_{i+1}}$

Cumulativity

In MLTT, Coq:

$$\frac{\Gamma \vdash A : \mathsf{U}_i}{\Gamma \vdash A : \mathsf{U}_{i+1}}$$

In $\lambda\Pi$ -calculus modulo:

 $\uparrow_i : \mathsf{U}_i \to \mathsf{U}_{i+1}$

$$\mathsf{T}_{i+1}(\uparrow_i A) \longrightarrow \mathsf{T}_i A$$

Cumulativity

In MLTT, Coq:

$$\frac{\Gamma \vdash A : \mathsf{U}_i}{\Gamma \vdash A : \mathsf{U}_{i+1}}$$

In $\lambda\Pi$ -calculus modulo:

$$\uparrow_i$$
 : $U_i \rightarrow U_{i+1}$

$$\mathsf{T}_{i+1}(\uparrow_i A) \longrightarrow \mathsf{T}_i A$$

Warning: need to reflect equality for completeness

Summary

In $\lambda\Pi$ -calculus modulo, can embed:

- functional pure type systems
- infinite type hierarchies
- cumulativity

and much more!

Introduction

The framework

Embeddings in $\lambda \Pi$

Embeddings in $\lambda\Pi$ -calculus modulo rewriting

Soundness in the $\lambda\Pi$ -calculus modulo rewriting

Embedding pure type systems

Conclusion

Conclusion

- Universal proof framework based on $\lambda\Pi$ -calculus modulo
- Sound and complete embeddings that preserve the reduction semantics
- Automated translation and verification
 - Coqine: Coq proofs in Dedukti
 - Holide: HOL Light proofs in Dedukti
 - **Zenonide:** Zenon traces in Dedukti
 - Focalide: Focalize specifications in Dedukti

Future work

- Universal proof framework?
 - Classical logic without double negation?
 - ► Linear logic?
 - Intersection types?

Tack!

Bibliography

- Denis Cousineau and Gilles Dowek, *Embedding pure type systems in the lambda-Pi calculus modulo*, TLCA 2007.
- Mathieu Boespflug, Quentin Carbonneaux and Olivier Hermant, The lambda-Pi calculus modulo as a universal proof language, PXTP 2012.
- Ronan Saillard, *Towards explicit rewrite rules in the lambda-Pi calculus modulo*, IWIL 2013.
- Ali Assaf, *Conservativity of embeddings in the lambda-Pi calculus modulo*, draft.
- Ali Assaf, *A calculus of constructions with explicit subtyping*, draft.
- Gilles Dowek, Models and termination of proof-reduction in the lambda-Pi calculus modulo theory, draft.