
Embedding logics in the λΠ-calculus modulo
rewriting

Ali Assaf
Inria Paris-Rocquencourt (Deducteam)

Ecole polytechnique

Stockholm logic seminar
October 21, 2014

Introduction

The framework

Embeddings in λΠ

Embeddings in λΠ-calculus modulo rewriting

Soundness in the λΠ-calculus modulo rewriting

Embedding pure type systems

Conclusion

Motivation

Many different proof assistants:
I HOL Light
I Coq
I Mizar
I ...

Many different formalisms:
I Simple type theory
I Calculus of inductive constructions
I Set theory
I ...

Motivation

Many different proof assistants:
I HOL Light
I Coq
I Mizar
I ...

Many different formalisms:
I Simple type theory
I Calculus of inductive constructions
I Set theory
I ...

Motivation

A universal proof checker: Dedukti

HOL Coq

Dedukti

PVS

A universal framework: the λΠ-calculus modulo rewriting

Motivation

A universal proof checker: Dedukti

HOL Coq

Dedukti

PVS

A universal framework: the λΠ-calculus modulo rewriting

Universal proof checker

Source: HOL, Coq, ...
I Pure type systems, inductive types, universes...
I Proof reconstruction, proof search, ...

Target: Dedukti
I λΠ-calculus modulo rewriting
I Proof checking (no proof reconstruction, no proof search, ...)

Introduction

The framework

Embeddings in λΠ

Embeddings in λΠ-calculus modulo rewriting

Soundness in the λΠ-calculus modulo rewriting

Embedding pure type systems

Conclusion

Deduction modulo
First-order logic modulo congruence

Γ ` A A ≡ B
Γ ` B

A theory is expressed by axioms + rewrite rules

Example
The property

∀x∀y , s x = s y ⇐⇒ x = y

can be expressed by the rewrite rule

s x = s y −→ x = y

Idea: replace axioms by rewrite rules
I Give computational meaning
I Preserve constructivism (disjunction & witness property)

Deduction modulo
First-order logic modulo congruence

Γ ` A A ≡ B
Γ ` B

A theory is expressed by axioms + rewrite rules

Example
The property

∀x∀y , s x = s y ⇐⇒ x = y

can be expressed by the rewrite rule

s x = s y −→ x = y

Idea: replace axioms by rewrite rules
I Give computational meaning
I Preserve constructivism (disjunction & witness property)

Deduction modulo
First-order logic modulo congruence

Γ ` A A ≡ B
Γ ` B

A theory is expressed by axioms + rewrite rules

Example
The property

∀x∀y , s x = s y ⇐⇒ x = y

can be expressed by the rewrite rule

s x = s y −→ x = y

Idea: replace axioms by rewrite rules
I Give computational meaning
I Preserve constructivism (disjunction & witness property)

From deduction modulo to λΠ-modulo

Curry-Howard correspondence
I Propositions ←→ types
I Proofs ←→ terms

Minimal first-order logic: λΠ-calculus
I Congruence modulo β
I Implemented in Twelf

Minimal deduction modulo: λΠ-calculus modulo rewriting
I Congruence modulo βR
I Implemented in Dedukti

From deduction modulo to λΠ-modulo

Curry-Howard correspondence
I Propositions ←→ types
I Proofs ←→ terms

Minimal first-order logic: λΠ-calculus
I Congruence modulo β
I Implemented in Twelf

Minimal deduction modulo: λΠ-calculus modulo rewriting
I Congruence modulo βR
I Implemented in Dedukti

From deduction modulo to λΠ-modulo

Curry-Howard correspondence
I Propositions ←→ types
I Proofs ←→ terms

Minimal first-order logic: λΠ-calculus
I Congruence modulo β
I Implemented in Twelf

Minimal deduction modulo: λΠ-calculus modulo rewriting
I Congruence modulo βR
I Implemented in Dedukti

The λΠ-calculus modulo rewriting

An extension of the λΠ-calculus with rewrite rules
I Typed λ-calculus (Curry-Howard correspondence)
I Dependent types
I Rewriting to express equivalence

A variation of the logical framework of Martin-Löf
I Equalities oriented into rewrite rules
I Confluence + normalization =⇒ decidable checking
I Efficient checking algorithm (Boespflug 2012, Saillard 2013)

The λΠ-calculus modulo rewriting

An extension of the λΠ-calculus with rewrite rules
I Typed λ-calculus (Curry-Howard correspondence)
I Dependent types
I Rewriting to express equivalence

A variation of the logical framework of Martin-Löf
I Equalities oriented into rewrite rules
I Confluence + normalization =⇒ decidable checking
I Efficient checking algorithm (Boespflug 2012, Saillard 2013)

Martin-Löf’s logical framework

Type formation: A Type

A Type B Type
A× B Type

Term formation (intro/elim): M : A

M : A N : A
(M,N) : A× B

M : A× B
fstM : A

M : A× B
sndM : B

Martin-Löf’s logical framework

Type equality: A ≡ B
Ti+1 ui ≡ Ui

Term equality: M ≡ N : A

fst (M,N) ≡ M : A snd (M,N) ≡ N : B

Towards formalism

Variables:
I explicit context Γ

Arities:
I currying A1 → . . .→ An → B
I kinds A1 → . . .→ An → Type
I unifying terms and types

Syntax

sorts s ::= Type | Kind
terms A,B,M,N ::= x | s | Πx : A.B | λx : A.M | M N
contexts Γ ::= · | Γ, x : A

Typing rules

(x : A) ∈ Γ

Γ ` x : A Γ ` Type : Kind

Γ ` A : Type Γ, x : A ` B : s
Γ ` Πx : A.B : s

Γ ` A : Type Γ, x : A ` M : B
Γ ` λx : A.M : Πx : A.B

Γ ` M : Πx : A.B Γ ` N : A
Γ ` M N : {N/x}B

Γ ` M : A Γ ` B : s A ≡ B
Γ ` M : B

Restrictions on rewrite rules

(Γ) M −→ N

Restrictions:
I Subject reduction for −→βR : Γ ` M : A and Γ ` N : A

I Confluence for −→βR : FV (N) ⊆ FV (M) + no divergent
critical pair

I Normalization for −→βR : ???

Restrictions on rewrite rules

(Γ) M −→ N

Restrictions:
I Subject reduction for −→βR : Γ ` M : A and Γ ` N : A

I Confluence for −→βR : FV (N) ⊆ FV (M) + no divergent
critical pair

I Normalization for −→βR : ???

Restrictions on rewrite rules

(Γ) M −→ N

Restrictions:
I Subject reduction for −→βR : Γ ` M : A and Γ ` N : A

I Confluence for −→βR : FV (N) ⊆ FV (M) + no divergent
critical pair

I Normalization for −→βR : ???

Restrictions on rewrite rules

(Γ) M −→ N

Restrictions:
I Subject reduction for −→βR : Γ ` M : A and Γ ` N : A

I Confluence for −→βR : FV (N) ⊆ FV (M) + no divergent
critical pair

I Normalization for −→βR : ???

Summary

I λΠ-calculus modulo = dependent types + rewrite rules
I Decidable type-checking under certain conditions

Introduction

The framework

Embeddings in λΠ

Embeddings in λΠ-calculus modulo rewriting

Soundness in the λΠ-calculus modulo rewriting

Embedding pure type systems

Conclusion

Using λΠ as a logical framework

Logical framework in Wikipedia:

In logic, a logical framework provides a means to define
(or present) a logic as a signature in a higher-order type
theory in such a way that provability of a formula in the
original logic reduces to a type inhabitation problem in
the framework type theory.

To embed a given theory X in λΠ, one must:
1. define a signature context Σ in λΠ describing the theory X
2. define a translation from the terms of X to the terms of λΠ in

the context Σ.

Using λΠ as a logical framework

Logical framework in Wikipedia:

In logic, a logical framework provides a means to define
(or present) a logic as a signature in a higher-order type
theory in such a way that provability of a formula in the
original logic reduces to a type inhabitation problem in
the framework type theory.

To embed a given theory X in λΠ, one must:
1. define a signature context Σ in λΠ describing the theory X
2. define a translation from the terms of X to the terms of λΠ in

the context Σ.

System F in λΠ

Define the signature context Σ as:

type : Type
arrow : type→ type→ type
forall : (type→ type)→ type

term : type→ Type
lam : (termA→ termB)→ term (arrowAB)

app : term (arrowAB)→ termA→ termB
Lam : (ΠA : type. term (F A))→ term (forallF)

App : term (forallF)→ ΠA : type. term (F A)

System F in λΠ

Translate the types and the terms as:

[α] = α

[A→ B] = arrow [A] [B]

[∀α : Type.B] = forall (λα : type. [B])

[x] = x
[λx : A.M] = lam (λx : term [A]. [M])

[M N] = app [M] [N]

[Λα : Type.M] = Lam (λα : type. [M])

[M 〈A〉] = App [M] [A]

System F in λΠ

Example
The identity function id = Λα : Type. λx : α. x is translated as:

[id] = Lam (λα : type. lam (λx : termα. x))

The type A = ∀α : Type. α→ α is translated as:

[A] = forall (λα : type. arrowαα)

Completeness

If M is well-typed then [M] is well-typed in the context Σ:

` M : A =⇒ Σ ` [M] : term [A]

Define JAK = term [A]:

` M : A =⇒ Σ ` [M] : JAK

If M is well-typed in Γ then [M] is well-typed in the context Σ, JΓK:

Γ ` M : A =⇒ Σ, JΓK ` [M] : JAK

Completeness

If M is well-typed then [M] is well-typed in the context Σ:

` M : A =⇒ Σ ` [M] : term [A]

Define JAK = term [A]:

` M : A =⇒ Σ ` [M] : JAK

If M is well-typed in Γ then [M] is well-typed in the context Σ, JΓK:

Γ ` M : A =⇒ Σ, JΓK ` [M] : JAK

Completeness

If M is well-typed then [M] is well-typed in the context Σ:

` M : A =⇒ Σ ` [M] : term [A]

Define JAK = term [A]:

` M : A =⇒ Σ ` [M] : JAK

If M is well-typed in Γ then [M] is well-typed in the context Σ, JΓK:

Γ ` M : A =⇒ Σ, JΓK ` [M] : JAK

System F in λΠ

Example
The self-application of id is well-typed in the empty context:

` id 〈A〉 id : A

Its translation is well-typed in Σ:

Σ ` app (App [id] JAK) [id] : JAK

Completeness

1. If M is a proof of (has type) A in X then [M] is a proof of
(has type) JAK in λΠ.

2. If A is provable (is inhabited) in X then JAK is provable (is
inhabited) in λΠ.

3. If X is inconsistent (every A is inhabited) then λΠ is
inconsistent (every JAK is inhabited).

What about the converse?

Completeness

1. If M is a proof of (has type) A in X then [M] is a proof of
(has type) JAK in λΠ.

2. If A is provable (is inhabited) in X then JAK is provable (is
inhabited) in λΠ.

3. If X is inconsistent (every A is inhabited) then λΠ is
inconsistent (every JAK is inhabited).

What about the converse?

Completeness

1. If M is a proof of (has type) A in X then [M] is a proof of
(has type) JAK in λΠ.

2. If A is provable (is inhabited) in X then JAK is provable (is
inhabited) in λΠ.

3. If X is inconsistent (every A is inhabited) then λΠ is
inconsistent (every JAK is inhabited).

What about the converse?

Completeness

1. If M is a proof of (has type) A in X then [M] is a proof of
(has type) JAK in λΠ.

2. If A is provable (is inhabited) in X then JAK is provable (is
inhabited) in λΠ.

3. If X is inconsistent (every A is inhabited) then λΠ is
inconsistent (every JAK is inhabited).

What about the converse?

Soundness

1. Consistency: if X is consistent then λΠ is consistent.

2. Conservativity: if JAK is provable in λΠ then A is provable in
X .

3. Adequacy: every (normal) proof in λΠ corresponds to a proof
in X .

These are important properties for a logical framework!

Soundness

1. Consistency: if X is consistent then λΠ is consistent.
2. Conservativity: if JAK is provable in λΠ then A is provable in

X .

3. Adequacy: every (normal) proof in λΠ corresponds to a proof
in X .

These are important properties for a logical framework!

Soundness

1. Consistency: if X is consistent then λΠ is consistent.
2. Conservativity: if JAK is provable in λΠ then A is provable in

X .
3. Adequacy: every (normal) proof in λΠ corresponds to a proof

in X .

These are important properties for a logical framework!

Soundness

1. Consistency: if X is consistent then λΠ is consistent.
2. Conservativity: if JAK is provable in λΠ then A is provable in

X .
3. Adequacy: every (normal) proof in λΠ corresponds to a proof

in X .

These are important properties for a logical framework!

Summary

I Source = X , Target = λΠ

I Embedding = signature Σ + translation [·]
I Completeness = typing in X =⇒ typing in λΠ

I Soundness = typing in λΠ =⇒ typing in X

Introduction

The framework

Embeddings in λΠ

Embeddings in λΠ-calculus modulo rewriting

Soundness in the λΠ-calculus modulo rewriting

Embedding pure type systems

Conclusion

Limitations of λΠ

The embedding does not preserve term (proof) reduction :

M −→∗ M ′ 6=⇒ [M] −→∗
[
M ′

]

The embedding does not preserve term (proof) equivalence:

M ≡ M ′ 6=⇒ [M] ≡
[
M ′

]

Limitations of λΠ

The embedding does not preserve term (proof) reduction :

M −→∗ M ′ 6=⇒ [M] −→∗
[
M ′

]
The embedding does not preserve term (proof) equivalence:

M ≡ M ′ 6=⇒ [M] ≡
[
M ′

]

Limitations of λΠ

Systems with dependent types (e.g. the calculus of constructions)
have a conversion rule:

Γ ` M : A A ≡ B
Γ ` M : B

In λΠ, JΓK ` [M] : JAK but JΓK 6` [M] : JBK (no completeness).

Conversion in λΠ

Approach 1: Introduce explicit equivalence judgements and a
conversion term:

equiv : type→ type→ Type
refl : equivMM

beta : equiv (app (lamF)N) (F N)

· · ·
conv : termA→ equiv AB→ termB

Cons:
I Need to explicitely give the equivalence derivations.
I Adding conv pollutes the structure of the terms and needs to

be taken care of in the equivalence relation.

Conversion in λΠ

Approach 2: Translate typing derivations instead of λ-terms

term : Type
lam : (term→ term)→ term
· · ·

hastype : term→ type→ Type
typelam : (Πx : term. hastype x A→ hastype (F x)B)→

hastype (lamF) (arrowAB)

· · ·

Pros:
I conv does not interfere with the structure of the λ-terms.

Cons:
I Lose Curry-Howard correspondence?
I Still need to explicitely give the equivalence derivations.

The λΠ-calculus modulo rewriting

Idea: extend the conversion rule of the λΠ-calculus with a rewrite
system R :

Γ ` M : A Γ ` B : Type A ≡βR B
Γ ` M : B

Add rewrite rules so that the translation preserves reduction.

The λΠ-calculus modulo rewriting

Idea: extend the conversion rule of the λΠ-calculus with a rewrite
system R :

Γ ` M : A Γ ` B : Type A ≡βR B
Γ ` M : B

Add rewrite rules so that the translation preserves reduction.

The λΠ-calculus modulo rewriting

Idea: extend the conversion rule of the λΠ-calculus with a rewrite
system R :

Γ ` M : A Γ ` B : Type A ≡βR B
Γ ` M : B

Add rewrite rules so that the translation preserves reduction (in
addition to binding and typing).

Preserving reduction

Signature context Σ:

type : Type
arrow : type→ type→ type

term : type→ Type
lam : (termA→ termB)→ term (arrowAB)

app : term (arrowAB)→ termA→ termB

Rewrite rules R :

app (lamF)N −→ F N

Preserving reduction

Signature context Σ:

type : Type
arrow : type→ type→ type

term : type→ Type
lam : (termA→ termB)→ term (arrowAB)

app : term (arrowAB)→ termA→ termB

Rewrite rules R :

term (arrowAB) −→ termA→ termB
lamF −→ F

appM N −→ M N

Preserving reduction

Signature context Σ:

type : Type
arrow : type→ type→ type

term : type→ Type

Rewrite rules R :

term (arrowAB) −→ termA→ termB

Translation:

[λx : A.M] = λx : JAK. [M]

[M N] = [M] [N]

Preserving reduction

Theorem
If M −→ M ′ then [M] −→+ [M ′].

Corollary
If M −→∗ M ′ then [M] −→∗ [M ′].

Corollary
If M ≡ M ′ then [M] ≡ [M ′].

Preserving reduction

Theorem
If M −→ M ′ then [M] −→+ [M ′].

Corollary
If M −→∗ M ′ then [M] −→∗ [M ′].

Corollary
If M ≡ M ′ then [M] ≡ [M ′].

Preserving reduction

Theorem
If M −→ M ′ then [M] −→+ [M ′].

Corollary
If M −→∗ M ′ then [M] −→∗ [M ′].

Corollary
If M ≡ M ′ then [M] ≡ [M ′].

Completeness

Recovered typing preservation.

Theorem (Cousineau & Dowek 2007)
If Γ ` M : A then Σ, JΓK ` [M] : JAK.
Works for any functional pure type system:
I System F
I Calculus of constructions
I Simple type theory

What about soundness?

Completeness

Recovered typing preservation.

Theorem (Cousineau & Dowek 2007)
If Γ ` M : A then Σ, JΓK ` [M] : JAK.
Works for any functional pure type system:
I System F
I Calculus of constructions
I Simple type theory

What about soundness?

On termination and soundness

Link between termination and soundness:
I λΠ is strongly normalizing

I Adding axioms (Σ) does not influence termination

I Can be used to show soundness:
I Consistency: there is no normal term of type J⊥K

I Adequacy: if JΓK ` M : JAK and M is a normal form, then
M = [N] for some N such that Γ ` N : A

I Conservativity: if JΓK ` M : JAK then M reduces to a normal
form [N] for some N such that Γ ` N : A.

On termination and soundness

Link between termination and soundness:
I λΠ is strongly normalizing

I Adding axioms (Σ) does not influence termination

I Can be used to show soundness:
I Consistency: there is no normal term of type J⊥K

I Adequacy: if JΓK ` M : JAK and M is a normal form, then
M = [N] for some N such that Γ ` N : A

I Conservativity: if JΓK ` M : JAK then M reduces to a normal
form [N] for some N such that Γ ` N : A.

On termination and soundness

Link between termination and soundness:
I λΠ is strongly normalizing

I Adding axioms (Σ) does not influence termination

I Can be used to show soundness:
I Consistency: there is no normal term of type J⊥K

I Adequacy: if JΓK ` M : JAK and M is a normal form, then
M = [N] for some N such that Γ ` N : A

I Conservativity: if JΓK ` M : JAK then M reduces to a normal
form [N] for some N such that Γ ` N : A.

On termination and soundness

Link between termination and soundness:
I λΠ is strongly normalizing

I Adding axioms (Σ) does not influence termination

I Can be used to show soundness:
I Consistency: there is no normal term of type J⊥K

I Adequacy: if JΓK ` M : JAK and M is a normal form, then
M = [N] for some N such that Γ ` N : A

I Conservativity: if JΓK ` M : JAK then M reduces to a normal
form [N] for some N such that Γ ` N : A.

On termination and soundness

Link between termination and soundness:
I λΠ is strongly normalizing

I Adding axioms (Σ) does not influence termination

I Can be used to show soundness:
I Consistency: there is no normal term of type J⊥K

I Adequacy: if JΓK ` M : JAK and M is a normal form, then
M = [N] for some N such that Γ ` N : A

I Conservativity: if JΓK ` M : JAK then M reduces to a normal
form [N] for some N such that Γ ` N : A.

On termination and soundness

Adding rewrite rules (R) can break strong normalization:
I because −→R does not terminate

I or because −→R ∪ −→β does not terminate

I or even because −→β does not terminate for well-typed terms

Need to find other solutions.

On termination and soundness

Adding rewrite rules (R) can break strong normalization:
I because −→R does not terminate

I or because −→R ∪ −→β does not terminate

I or even because −→β does not terminate for well-typed terms

Need to find other solutions.

On termination and soundness

Adding rewrite rules (R) can break strong normalization:
I because −→R does not terminate

I or because −→R ∪ −→β does not terminate

I or even because −→β does not terminate for well-typed terms

Need to find other solutions.

On termination and soundness

Adding rewrite rules (R) can break strong normalization:
I because −→R does not terminate

I or because −→R ∪ −→β does not terminate

I or even because −→β does not terminate for well-typed terms

Need to find other solutions.

Summary

I λΠ embeddings do not preserve reduction.
I Obstacle for embedding theories with dependent types.
I Adding rewrite rules to λΠ helps recover completeness...
I ... but can break soundness.

Introduction

The framework

Embeddings in λΠ

Embeddings in λΠ-calculus modulo rewriting

Soundness in the λΠ-calculus modulo rewriting

Embedding pure type systems

Conclusion

Approach 1: models

Idea: build a model for λΠ/X
I in the algebra of reducibility candidates
I or in a general notion of Π-algebra.

The model implies strong normalization of λΠ/X . Use this to prove
soundness (consistency, adequacy, conservativity).

Theorem (Dowek 2014)
There is a model for λΠ/STT and for λΠ/COC.

Problem: implies strong normalization in X , so at least as hard to
prove as strong normalization in X .

Approach 1: models

Idea: build a model for λΠ/X
I in the algebra of reducibility candidates
I or in a general notion of Π-algebra.

The model implies strong normalization of λΠ/X . Use this to prove
soundness (consistency, adequacy, conservativity).

Theorem (Dowek 2014)
There is a model for λΠ/STT and for λΠ/COC.

Problem: implies strong normalization in X , so at least as hard to
prove as strong normalization in X .

Approach 1: models

Idea: build a model for λΠ/X
I in the algebra of reducibility candidates
I or in a general notion of Π-algebra.

The model implies strong normalization of λΠ/X . Use this to prove
soundness (consistency, adequacy, conservativity).

Theorem (Dowek 2014)
There is a model for λΠ/STT and for λΠ/COC.

Problem: implies strong normalization in X , so at least as hard to
prove as strong normalization in X .

Approach 1: models

Idea: build a model for λΠ/X
I in the algebra of reducibility candidates
I or in a general notion of Π-algebra.

The model implies strong normalization of λΠ/X . Use this to prove
soundness (consistency, adequacy, conservativity).

Theorem (Dowek 2014)
There is a model for λΠ/STT and for λΠ/COC.

Problem: implies strong normalization in X , so at least as hard to
prove as strong normalization in X .

Approach 2: relative normalization

If JΓK ` M : JAK, what can we say about M?

Example
If X is the simply-typed λ-calculus, the polymorphic identity
function is not well-typed:

β : Type 6` (λα : Type. λx : α. x)β : β → β

It is well-typed in λΠ/X :

β : type ` (λα : type. λx : termα. x)β : termβ → termβ

But it reduces to λx : termβ. x = [λx : β. x], a term that is
well-typed in X .
Idea: reduce only what is necessary.

Approach 2: relative normalization

If JΓK ` M : JAK, what can we say about M?

Example
If X is the simply-typed λ-calculus, the polymorphic identity
function is not well-typed:

β : Type 6` (λα : Type. λx : α. x)β : β → β

It is well-typed in λΠ/X :

β : type ` (λα : type. λx : termα. x)β : termβ → termβ

But it reduces to λx : termβ. x = [λx : β. x], a term that is
well-typed in X .
Idea: reduce only what is necessary.

Approach 2: relative normalization

If JΓK ` M : JAK, what can we say about M?

Example
If X is the simply-typed λ-calculus, the polymorphic identity
function is not well-typed:

β : Type 6` (λα : Type. λx : α. x)β : β → β

It is well-typed in λΠ/X :

β : type ` (λα : type. λx : termα. x)β : termβ → termβ

But it reduces to λx : termβ. x = [λx : β. x], a term that is
well-typed in X .

Idea: reduce only what is necessary.

Approach 2: relative normalization

If JΓK ` M : JAK, what can we say about M?

Example
If X is the simply-typed λ-calculus, the polymorphic identity
function is not well-typed:

β : Type 6` (λα : Type. λx : α. x)β : β → β

It is well-typed in λΠ/X :

β : type ` (λα : type. λx : termα. x)β : termβ → termβ

But it reduces to λx : termβ. x = [λx : β. x], a term that is
well-typed in X .
Idea: reduce only what is necessary.

Erasure

Define an erasure from λΠ/X to X :

|x | = x
|λx : A.M| = λx : ‖A‖. |M|

|M N| = |M| |N|

‖type‖ = Type
‖termA‖ = |A|
‖A→ B‖ = ‖A‖ → ‖B‖

Erasure is the inverse of the translation:

|[M]| = M
‖JAK‖ = A

Proving soundness

What statement should we prove?
I If JΓK ` M : JAK in λΠ/X then Γ ` |M| : A in X?

β : type ` (λα : type. λx : termα. x)β : termβ → termβ

I If JΓK ` M : JAK in λΠ/X then M −→∗ M ′ such that
Γ ` |M ′| : A in X?

JΓK ` M : Πx : A. JBK JΓK ` N : A
JΓK ` M N : JBK

Proving soundness

What statement should we prove?
I If JΓK ` M : JAK in λΠ/X then Γ ` |M| : A in X?
β : type ` (λα : type. λx : termα. x)β : termβ → termβ

I If JΓK ` M : JAK in λΠ/X then M −→∗ M ′ such that
Γ ` |M ′| : A in X?

JΓK ` M : Πx : A. JBK JΓK ` N : A
JΓK ` M N : JBK

Proving soundness

What statement should we prove?
I If JΓK ` M : JAK in λΠ/X then Γ ` |M| : A in X?
β : type ` (λα : type. λx : termα. x)β : termβ → termβ

I If JΓK ` M : JAK in λΠ/X then M −→∗ M ′ such that
Γ ` |M ′| : A in X?

JΓK ` M : Πx : A. JBK JΓK ` N : A
JΓK ` M N : JBK

Proving soundness

What statement should we prove?
I If JΓK ` M : JAK in λΠ/X then Γ ` |M| : A in X?
β : type ` (λα : type. λx : termα. x)β : termβ → termβ

I If JΓK ` M : JAK in λΠ/X then M −→∗ M ′ such that
Γ ` |M ′| : A in X?

JΓK ` M : Πx : A. JBK JΓK ` N : A
JΓK ` M N : JBK

Proving soundness

What statement should we prove?
I If JΓK ` M : A in λΠ/X then M −→∗ M ′ and A −→∗ A′ such

that Γ ` |M ′| : ‖A′‖ in X?

JΓK , x : A ` M : B
JΓK ` λx : A.M : Πx : A.B

I If Γ ` M : A in λΠ/X then Γ −→∗ Γ′, M −→∗ M ′, and
A −→∗ A′ such that ‖Γ′‖ ` |M ′| : ‖A′‖ in X?

` λα : type. λx : termα. x : Πα : type. termβ → termβ

Proving soundness

What statement should we prove?
I If JΓK ` M : A in λΠ/X then M −→∗ M ′ and A −→∗ A′ such

that Γ ` |M ′| : ‖A′‖ in X?
JΓK , x : A ` M : B

JΓK ` λx : A.M : Πx : A.B

I If Γ ` M : A in λΠ/X then Γ −→∗ Γ′, M −→∗ M ′, and
A −→∗ A′ such that ‖Γ′‖ ` |M ′| : ‖A′‖ in X?

` λα : type. λx : termα. x : Πα : type. termβ → termβ

Proving soundness

What statement should we prove?
I If JΓK ` M : A in λΠ/X then M −→∗ M ′ and A −→∗ A′ such

that Γ ` |M ′| : ‖A′‖ in X?
JΓK , x : A ` M : B

JΓK ` λx : A.M : Πx : A.B

I If Γ ` M : A in λΠ/X then Γ −→∗ Γ′, M −→∗ M ′, and
A −→∗ A′ such that ‖Γ′‖ ` |M ′| : ‖A′‖ in X?

` λα : type. λx : termα. x : Πα : type. termβ → termβ

Proving soundness

What statement should we prove?
I If JΓK ` M : A in λΠ/X then M −→∗ M ′ and A −→∗ A′ such

that Γ ` |M ′| : ‖A′‖ in X?
JΓK , x : A ` M : B

JΓK ` λx : A.M : Πx : A.B

I If Γ ` M : A in λΠ/X then Γ −→∗ Γ′, M −→∗ M ′, and
A −→∗ A′ such that ‖Γ′‖ ` |M ′| : ‖A′‖ in X?

` λα : type. λx : termα. x : Πα : type. termβ → termβ

Proving soundness

What have we learned?
1. λΠ/X can type more terms than X.
2. These terms can be used to construct proofs for the

translation of X types.
3. The λΠ/X terms that inhabit the translation of X types can

be reduced to the translation of X terms.

Need higher-order reasonning.

Proving soundness

What have we learned?
1. λΠ/X can type more terms than X.
2. These terms can be used to construct proofs for the

translation of X types.
3. The λΠ/X terms that inhabit the translation of X types can

be reduced to the translation of X terms.
Need higher-order reasonning.

Reducibility method

Let Γ′ be a context in X . Define the predicate Γ′ � M : A by
induction on A:

I If A = type then Γ′ � M : A when M −→∗ M ′ such that
Γ′ ` |M ′| : Type.

I If A = termB then Γ′ � M : A when M −→∗ M ′ and
B −→∗ B ′ such that Γ′ ` |M ′| : |B ′|.

I If A = Πx : B.C then Γ′ � M : A when for for all N such that
Γ′ � N : B , Γ′ � M N : {N/x}C .

If σ is a substitution mapping variables to terms:
I Γ′ � σ : Γ when Γ′ � σ (x) : σ (A) for all (x : A) ∈ Γ

Reducibility method

Let Γ′ be a context in X . Define the predicate Γ′ � M : A by
induction on A:

I If A = type then Γ′ � M : A when M −→∗ M ′ such that
Γ′ ` |M ′| : Type.

I If A = termB then Γ′ � M : A when M −→∗ M ′ and
B −→∗ B ′ such that Γ′ ` |M ′| : |B ′|.

I If A = Πx : B.C then Γ′ � M : A when for for all N such that
Γ′ � N : B , Γ′ � M N : {N/x}C .

If σ is a substitution mapping variables to terms:
I Γ′ � σ : Γ when Γ′ � σ (x) : σ (A) for all (x : A) ∈ Γ

Reducibility method

Let Γ′ be a context in X . Define the predicate Γ′ � M : A by
induction on A:

I If A = type then Γ′ � M : A when M −→∗ M ′ such that
Γ′ ` |M ′| : Type.

I If A = termB then Γ′ � M : A when M −→∗ M ′ and
B −→∗ B ′ such that Γ′ ` |M ′| : |B ′|.

I If A = Πx : B.C then Γ′ � M : A when for for all N such that
Γ′ � N : B , Γ′ � M N : {N/x}C .

If σ is a substitution mapping variables to terms:
I Γ′ � σ : Γ when Γ′ � σ (x) : σ (A) for all (x : A) ∈ Γ

Reducibility method

Let Γ′ be a context in X . Define the predicate Γ′ � M : A by
induction on A:

I If A = type then Γ′ � M : A when M −→∗ M ′ such that
Γ′ ` |M ′| : Type.

I If A = termB then Γ′ � M : A when M −→∗ M ′ and
B −→∗ B ′ such that Γ′ ` |M ′| : |B ′|.

I If A = Πx : B.C then Γ′ � M : A when for for all N such that
Γ′ � N : B , Γ′ � M N : {N/x}C .

If σ is a substitution mapping variables to terms:
I Γ′ � σ : Γ when Γ′ � σ (x) : σ (A) for all (x : A) ∈ Γ

Reducibility method

Let Γ′ be a context in X . Define the predicate Γ′ � M : A by
induction on A:

I If A = type then Γ′ � M : A when M −→∗ M ′ such that
Γ′ ` |M ′| : Type.

I If A = termB then Γ′ � M : A when M −→∗ M ′ and
B −→∗ B ′ such that Γ′ ` |M ′| : |B ′|.

I If A = Πx : B.C then Γ′ � M : A when for for all N such that
Γ′ � N : B , Γ′ � M N : {N/x}C .

If σ is a substitution mapping variables to terms:
I Γ′ � σ : Γ when Γ′ � σ (x) : σ (A) for all (x : A) ∈ Γ

Soundness

Theorem (Assaf 2013)
If Γ ` M : A in λΠ/X then for any X context Γ′ and substitution σ
such that Γ′ � σ : Γ, Γ′ � σ(M) : σ(A).

Proof.
By induction on the derivation of Γ ` M : A.

Corollary (Conservativity)
If JΓK ` M : JAK then M −→∗ M ′ such that Γ ` |M ′| : A.

Proof.
By taking the identity substitution, ‖σ(JAK)‖ = ‖JAK‖ = A.

Soundness

Theorem (Assaf 2013)
If Γ ` M : A in λΠ/X then for any X context Γ′ and substitution σ
such that Γ′ � σ : Γ, Γ′ � σ(M) : σ(A).

Proof.
By induction on the derivation of Γ ` M : A.

Corollary (Conservativity)
If JΓK ` M : JAK then M −→∗ M ′ such that Γ ` |M ′| : A.

Proof.
By taking the identity substitution, ‖σ(JAK)‖ = ‖JAK‖ = A.

Relative normalization

I Avoid complex techniques such as reducibility candidates.
I Works for non-terminating theories!
I For pure type systems, λΠ/X corresponds to a conservative

completion of X .

Summary

I Strong normalization = all terms in λΠ/X are strongly
normalizing

I Proved using termination models

I Relative normalization = terms in λΠ/X can be reduced to
terms in X .

I Proved by using reducibility on a more general statement

I Both approaches show conservativity of λΠ/X

Introduction

The framework

Embeddings in λΠ

Embeddings in λΠ-calculus modulo rewriting

Soundness in the λΠ-calculus modulo rewriting

Embedding pure type systems

Conclusion

Pure type systems

Specification S = (S,A,R)

I S a set of sorts
I A ⊆ S × S a set of axioms
I R ⊆ S × S × S a set of rules

Syntax

sorts s ∈ S
terms M,N,A,B ::= x | s | Πx : A.B | λx : A.M | M N
contexts Γ ::= · | Γ, x : A

Typing rules

(x : A) ∈ Γ

Γ ` x : A
(s1, s2) ∈ A
Γ ` s1 : s2

Γ ` A : s1 Γ, x : A ` B : s2 (s1, s2, s3) ∈ R
Γ ` Πx : A.B : s3

Γ ` Πx : A.B : s Γ, x : A ` M : B
Γ ` λx : A.M : Πx : A.B

Γ ` M : Πx : A.B Γ ` N : A
Γ ` M N : {N/x}B

Γ ` M : A Γ ` B : s A ≡ B
Γ ` M : B

Example

Example
The calculus of constructions (COC) is the PTS defined by the
signature:

S = Type,Kind
A = (Type,Kind)

R = (Type,Type,Type), (Kind,Type,Type),

(Type,Kind,Kind), (Kind,Kind,Kind)

The polymorphic identity function id = (λα : Type. λx : α. x) is
well-typed in COC:

` id : (Πα : Type. α→ α)

Example

Example
Simple type theory is (STT) is the PTS defined by the signature:

S = Prop,Type,Kind
A = (Prop,Type) (Type,Kind)

R = (Prop,Prop,Prop), (Type,Prop,Prop), (Type,Type,Type)

Translations

I λΠ-calculus: types may only depend on terms
I PTS: terms and types may depend on types

(polymorphism, type operators)

Tarski style universes (Palmgren 1988): two representations
I [A] as a term
I JAK as a type

Translations

I λΠ-calculus: types may only depend on terms
I PTS: terms and types may depend on types

(polymorphism, type operators)

Tarski style universes (Palmgren 1988): two representations
I [A] as a term
I JAK as a type

Two Translations

As a type:
I JsK = Us , the symbol for the universe of types s
I JΠx : A.BK = Πx : JAK. JBK

As a term:
I [s] = us , a constant
I [Πx : A.B] = π [A] (λx : JAK. [B])

Two Translations

As a type:
I JsK = Us , the symbol for the universe of types s
I JΠx : A.BK = Πx : JAK. JBK

As a term:
I [s] = us , a constant
I [Πx : A.B] = π [A] (λx : JAK. [B])

Decoding function

I Decoding function T

JAK = T [A]

I Constraints:

Decoding function

I Decoding function T

JAK = T [A]

I Constraints:

JsK = Us

JΠx : A.BK = Πx : JAK. JBK

Decoding function

I Decoding function T

JAK = T [A]

I Constraints:

T [s] = Us

T [(Πx : A.B)] = Πx : TA.TB

Decoding function

I Decoding function T

JAK = T [A]

I Constraints:

T us −→ Us

T (π AB) −→ Πx : TA.T (B x)

The embedding

Constants

Us : Type ∀s ∈ S
Ts : Us → Type ∀s ∈ S
us1 : Us2 ∀(s1, s2) ∈ A
πs1,s2,s3 : Πα : Us1 . (Ts1 α→ Us2)→ Us3 ∀(s1, s2, s3) ∈ R

Rewrite rules

Ts2 ṡ1 −→ s1 ∀(s1, s2) ∈ A
Ts3 (πs1,s2,s3 αβ) −→ Πx : Ts1 α.Ts2 (β x) ∀(s1, s2, s3) ∈ R

The embedding

[x] = x
[s] = us

[Πx : A.B] = πs1,s2,s3 [A] [B]

[λx : A.M] = λx : JAK. [M]

[M N] = [M] [N]

JsK = Us

JΠx : A.BK = Πx : JAK. JBK
JAK = Ts [A]

Infinite universe hierarchy

In MLTT, Coq, Agda:

U0 : U1 : U2 : . . .

In λΠ-calculus modulo:

Infinite universe hierarchy

In MLTT, Coq, Agda:

U0 : U1 : U2 : . . .

In λΠ-calculus modulo:

Ui : Type ∀i ∈ N
Ti : Ui → Type ∀i ∈ N
ui : Ui+1 ∀i ∈ N
πi : Πα : Ui . ((Ti α→ Ui))→ Ui ∀i ∈ N

Infinite universe hierarchy

In MLTT, Coq, Agda:

U0 : U1 : U2 : . . .

In λΠ-calculus modulo:

U : nat→ Type
T : Πi : nat.U i → Type
u : Πi : nat.U (i + 1)

π : Πi : nat.Πα : U i . ((T i α→ U i))→ U i

Cumulativity

In MLTT, Coq:
Γ ` A : Ui

Γ ` A : Ui+1

In λΠ-calculus modulo:

↑i : Ui → Ui+1

Ti+1 (↑i A) −→ Ti A

Warning: need to reflect equality for completeness

Cumulativity

In MLTT, Coq:
Γ ` A : Ui

Γ ` A : Ui+1

In λΠ-calculus modulo:

↑i : Ui → Ui+1

Ti+1 (↑i A) −→ Ti A

Warning: need to reflect equality for completeness

Cumulativity

In MLTT, Coq:
Γ ` A : Ui

Γ ` A : Ui+1

In λΠ-calculus modulo:

↑i : Ui → Ui+1

Ti+1 (↑i A) −→ Ti A

Warning: need to reflect equality for completeness

Summary

In λΠ-calculus modulo, can embed:
I functional pure type systems
I infinite type hierarchies
I cumulativity

and much more!

Introduction

The framework

Embeddings in λΠ

Embeddings in λΠ-calculus modulo rewriting

Soundness in the λΠ-calculus modulo rewriting

Embedding pure type systems

Conclusion

Conclusion

I Universal proof framework based on λΠ-calculus modulo
I Sound and complete embeddings that preserve the reduction

semantics
I Automated translation and verification

I Coqine: Coq proofs in Dedukti
I Holide: HOL Light proofs in Dedukti
I Zenonide: Zenon traces in Dedukti
I Focalide: Focalize specifications in Dedukti

Future work

I Universal proof framework?
I Classical logic without double negation?
I Linear logic?
I Intersection types?

Tack!

Bibliography

Denis Cousineau and Gilles Dowek, Embedding pure type
systems in the lambda-Pi calculus modulo, TLCA 2007.

Mathieu Boespflug, Quentin Carbonneaux and Olivier
Hermant, The lambda-Pi calculus modulo as a universal proof
language, PXTP 2012.

Ronan Saillard, Towards explicit rewrite rules in the lambda-Pi
calculus modulo, IWIL 2013.

Ali Assaf, Conservativity of embeddings in the lambda-Pi
calculus modulo, draft.

Ali Assaf, A calculus of constructions with explicit subtyping,
draft.

Gilles Dowek, Models and termination of proof-reduction in the
lambda-Pi calculus modulo theory, draft.

	Introduction
	The framework
	Embeddings in
	Embeddings in -calculus modulo rewriting
	Soundness in the -calculus modulo rewriting
	Embedding pure type systems
	Conclusion

