Embedding logics in the $\lambda \Pi$-calculus modulo rewriting

Ali Assaf
Inria Paris-Rocquencourt (Deducteam)
Ecole polytechnique

Stockholm logic seminar
October 21, 2014

Introduction

The framework

Embeddings in $\lambda \Pi$

Embeddings in $\lambda \Pi$-calculus modulo rewriting

Soundness in the $\lambda \Pi$-calculus modulo rewriting

Embedding pure type systems

Conclusion

Motivation

Many different proof assistants:

- HOL Light
- Coq
- Mizar
- ...

Motivation

Many different proof assistants:

- HOL Light
- Coq
- Mizar
- ...

Many different formalisms:

- Simple type theory
- Calculus of inductive constructions
- Set theory
- ...

Motivation

A universal proof checker: Dedukti

Motivation

A universal proof checker: Dedukti

A universal framework: the $\lambda \Pi$-calculus modulo rewriting

Universal proof checker

Source: HOL, Coq, ...

- Pure type systems, inductive types, universes...
- Proof reconstruction, proof search, ...

Target: Dedukti

- $\lambda \Pi$-calculus modulo rewriting
- Proof checking (no proof reconstruction, no proof search, ...)

Introduction

The framework

Embeddings in $\lambda \Pi$

Embeddings in $\lambda \Pi$-calculus modulo rewriting

Soundness in the $\lambda \Pi$-calculus modulo rewriting

Embedding pure type systems

Conclusion

Deduction modulo

First-order logic modulo congruence

$$
\frac{\Gamma \vdash A \quad A \equiv B}{\Gamma \vdash B}
$$

A theory is expressed by axioms + rewrite rules

Deduction modulo

First-order logic modulo congruence

$$
\frac{\Gamma \vdash A \quad A \equiv B}{\Gamma \vdash B}
$$

A theory is expressed by axioms + rewrite rules

Example

The property

$$
\forall x \forall y, \mathrm{~s} x=\mathrm{s} y \Longleftrightarrow x=y
$$

can be expressed by the rewrite rule

$$
\mathrm{s} x=\mathrm{s} y \longrightarrow x=y
$$

Deduction modulo

First-order logic modulo congruence

$$
\frac{\Gamma \vdash A \quad A \equiv B}{\Gamma \vdash B}
$$

A theory is expressed by axioms + rewrite rules
Example
The property

$$
\forall x \forall y, \mathrm{~s} x=\mathrm{s} y \Longleftrightarrow x=y
$$

can be expressed by the rewrite rule

$$
\mathrm{s} x=\mathrm{s} y \longrightarrow x=y
$$

Idea: replace axioms by rewrite rules

- Give computational meaning
- Preserve constructivism (disjunction \& witness property)

From deduction modulo to $\lambda \Pi$-modulo

Curry-Howard correspondence

- Propositions \longleftrightarrow types
- Proofs \longleftrightarrow terms

From deduction modulo to $\lambda \Pi$-modulo

Curry-Howard correspondence

- Propositions \longleftrightarrow types
- Proofs \longleftrightarrow terms

Minimal first-order logic: $\lambda \Pi$-calculus

- Congruence modulo β
- Implemented in Twelf

From deduction modulo to $\lambda \Pi$-modulo

Curry-Howard correspondence

- Propositions \longleftrightarrow types
- Proofs \longleftrightarrow terms

Minimal first-order logic: $\lambda \Pi$-calculus

- Congruence modulo β
- Implemented in Twelf

Minimal deduction modulo: $\lambda \Pi$-calculus modulo rewriting

- Congruence modulo βR
- Implemented in Dedukti

The $\lambda \Pi$-calculus modulo rewriting

An extension of the $\lambda \Pi$-calculus with rewrite rules

- Typed λ-calculus (Curry-Howard correspondence)
- Dependent types
- Rewriting to express equivalence

The $\lambda \Pi$-calculus modulo rewriting

An extension of the $\lambda \Pi$-calculus with rewrite rules

- Typed λ-calculus (Curry-Howard correspondence)
- Dependent types
- Rewriting to express equivalence

A variation of the logical framework of Martin-Löf

- Equalities oriented into rewrite rules
- Confluence + normalization \Longrightarrow decidable checking
- Efficient checking algorithm (Boespflug 2012, Saillard 2013)

Martin-Löf's logical framework

Type formation: A Type
$\frac{A \text { Type } \quad B \text { Type }}{A \times B \text { Type }}$

Term formation (intro/elim): $M: A$

$$
\frac{M: A \quad N: A}{(M, N): A \times B}
$$

$$
\frac{M: A \times B}{\text { fst } M: A} \quad \frac{M: A \times B}{\text { snd } M: B}
$$

Martin-Löf's logical framework

Type equality: $A \equiv B$

$$
\mathrm{T}_{i+1} \mathrm{u}_{i} \equiv \mathrm{U}_{i}
$$

Term equality: $M \equiv N: A$

$$
\text { fst }(M, N) \equiv M: A \quad \text { snd }(M, N) \equiv N: B
$$

Towards formalism

Variables:

- explicit context 「

Arities:

- currying $A_{1} \rightarrow \ldots \rightarrow A_{n} \rightarrow B$
- kinds $A_{1} \rightarrow \ldots \rightarrow A_{n} \rightarrow$ Type
- unifying terms and types

Syntax

$$
\begin{array}{lll}
\text { sorts } & s & ::=\text { Type } \mid \text { Kind } \\
\text { terms } & A, B, M, N & ::=x|s| \Pi x: A . B|\lambda x: A . M| M N \\
\text { contexts } & \Gamma & ::=\cdot \mid \Gamma, x: A
\end{array}
$$

Typing rules

$$
\begin{aligned}
& \frac{(x: A) \in \Gamma}{\Gamma \vdash x: A} \quad \Gamma \vdash \text { Type:Kind } \\
& \frac{\Gamma \vdash A: \text { Type }}{\Gamma \vdash \Pi x: A \cdot B: s} \quad \Gamma \vdash B: s \\
& \frac{\Gamma \vdash A: \text { Type } \quad \Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda x: A \cdot M: \Pi x: A \cdot B} \\
& \frac{\Gamma \vdash M: \Pi x: A \cdot B \quad \Gamma \vdash N: A}{\Gamma \vdash M N:\{N / x\} B} \\
& \frac{\Gamma \vdash M: A \quad \Gamma \vdash B: s \quad A \equiv B}{\Gamma \vdash M: B}
\end{aligned}
$$

Restrictions on rewrite rules

(Г) $M \longrightarrow N$

Restrictions on rewrite rules

(Г) $M \longrightarrow N$

Restrictions:

- Subject reduction for $\longrightarrow_{\beta R}: \Gamma \vdash M: A$ and $\Gamma \vdash N: A$

Restrictions on rewrite rules

$$
() M \longrightarrow N
$$

Restrictions:

- Subject reduction for $\longrightarrow_{\beta R}: \Gamma \vdash M: A$ and $\Gamma \vdash N: A$
- Confluence for $\longrightarrow_{\beta R}: F V(N) \subseteq F V(M)+$ no divergent critical pair

Restrictions on rewrite rules

$$
(\Gamma) M \longrightarrow N
$$

Restrictions:

- Subject reduction for $\longrightarrow_{\beta R}: \Gamma \vdash M: A$ and $\Gamma \vdash N: A$
- Confluence for $\longrightarrow_{\beta R}: F V(N) \subseteq F V(M)+$ no divergent critical pair
- Normalization for $\longrightarrow_{\beta R}$: ???

Summary

- $\lambda \Pi$-calculus modulo $=$ dependent types + rewrite rules
- Decidable type-checking under certain conditions

Introduction

The framework

Embeddings in $\lambda \Pi$

Embeddings in $\lambda \Pi$-calculus modulo rewriting

Soundness in the $\lambda \Pi$-calculus modulo rewriting

Embedding pure type systems

Conclusion

Using $\lambda \Pi$ as a logical framework

Logical framework in Wikipedia:
In logic, a logical framework provides a means to define (or present) a logic as a signature in a higher-order type theory in such a way that provability of a formula in the original logic reduces to a type inhabitation problem in the framework type theory.

Using $\lambda \Pi$ as a logical framework

Logical framework in Wikipedia:
In logic, a logical framework provides a means to define (or present) a logic as a signature in a higher-order type theory in such a way that provability of a formula in the original logic reduces to a type inhabitation problem in the framework type theory.

To embed a given theory X in $\lambda \Pi$, one must:

1. define a signature context Σ in $\lambda \Pi$ describing the theory X
2. define a translation from the terms of X to the terms of $\lambda \Pi$ in the context Σ.

System F in $\lambda \Pi$

Define the signature context Σ as:

type	$:$ Type
arrow	$:$ type \rightarrow type \rightarrow type
forall	$:($ type \rightarrow type $) \rightarrow$ type

term : type \rightarrow Type
lam $\quad: \quad(\operatorname{term} A \rightarrow \operatorname{term} B) \rightarrow \operatorname{term}($ arrow $A B)$
app $\quad: \quad \operatorname{term}(\operatorname{arrow} A B) \rightarrow \operatorname{term} A \rightarrow \operatorname{term} B$
Lam : $\quad(\Pi A$: type.term $(F A)) \rightarrow \operatorname{term}(f o r a l l F)$
App : term (forall $F) \rightarrow \Pi A$: type. term $(F A)$

System F in $\lambda \Pi$

Translate the types and the terms as:

$$
\begin{aligned}
{[\alpha] } & =\alpha \\
{[A \rightarrow B] } & =\operatorname{arrow}[A][B] \\
{[\forall \alpha: \text { Type. } B] } & =\text { forall }(\lambda \alpha: \text { type. }[B]) \\
{[x] } & =x \\
{[\lambda x: A \cdot M] } & =\operatorname{lam}(\lambda x: \operatorname{term}[A] \cdot[M]) \\
{[M N] } & =\operatorname{app}[M][N] \\
{[\Lambda \alpha: \text { Type. } M] } & =\operatorname{Lam}(\lambda \alpha: \text { type. }[M]) \\
{[M\langle A\rangle] } & =\operatorname{App}[M][A]
\end{aligned}
$$

System F in $\lambda \Pi$

Example

The identity function id $=\Lambda \alpha:$ Type. $\lambda x: \alpha . x$ is translated as:

$$
[\text { id }]=\operatorname{Lam}(\lambda \alpha: \operatorname{type} \cdot \operatorname{lam}(\lambda x: \operatorname{term} \alpha \cdot x))
$$

The type $A=\forall \alpha$: Type. $\alpha \rightarrow \alpha$ is translated as:

$$
[A]=\text { forall }(\lambda \alpha: \text { type. arrow } \alpha \alpha)
$$

Completeness

If M is well-typed then $[M]$ is well-typed in the context Σ :

$$
\vdash M: A \quad \Longrightarrow \quad \Sigma \vdash[M]: \operatorname{term}[A]
$$

Completeness

If M is well-typed then $[M]$ is well-typed in the context Σ :

$$
\vdash M: A \quad \Longrightarrow \quad \Sigma \vdash[M]: \operatorname{term}[A]
$$

Define $\llbracket A \rrbracket=$ term $[A]:$

$$
\vdash M: A \quad \Longrightarrow \quad \Sigma \vdash[M]: \llbracket A \rrbracket
$$

Completeness

If M is well-typed then $[M]$ is well-typed in the context Σ :

$$
\vdash M: A \quad \Longrightarrow \quad \Sigma \vdash[M]: \operatorname{term}[A]
$$

Define $\llbracket A \rrbracket=$ term $[A \rrbracket:$

$$
\vdash M: A \quad \Longrightarrow \quad \Sigma \vdash[M]: \llbracket A \rrbracket
$$

If M is well-typed in Γ then $[M]$ is well-typed in the context $\Sigma, \llbracket \Gamma \rrbracket$:

$$
\left\ulcorner\vdash M: A \quad \sum, \llbracket\ulcorner\rrbracket \vdash[M]: \llbracket A \rrbracket\right.
$$

System F in $\lambda \Pi$

Example

The self-application of id is well-typed in the empty context:

$$
\vdash \mathrm{id}\langle A\rangle \text { id }: A
$$

Its translation is well-typed in Σ :

$$
\Sigma \vdash \operatorname{app}(\mathrm{App}[\mathrm{id}] \llbracket A \rrbracket)[\mathrm{id}]: \llbracket A \rrbracket
$$

Completeness

1. If M is a proof of (has type) A in X then [M] is a proof of (has type) $\llbracket A \rrbracket$ in $\lambda \Pi$.

Completeness

1. If M is a proof of (has type) A in X then [M] is a proof of (has type) $\llbracket A \rrbracket$ in $\lambda \Pi$.
2. If A is provable (is inhabited) in X then $\llbracket A \rrbracket$ is provable (is inhabited) in $\lambda \Pi$.

Completeness

1. If M is a proof of (has type) A in X then [M] is a proof of (has type) $\llbracket A \rrbracket$ in $\lambda \Pi$.
2. If A is provable (is inhabited) in X then $\llbracket A \rrbracket$ is provable (is inhabited) in $\lambda \Pi$.
3. If X is inconsistent (every A is inhabited) then $\lambda \Pi$ is inconsistent (every $\llbracket A \rrbracket$ is inhabited).

Completeness

1. If M is a proof of (has type) A in X then [M] is a proof of (has type) $\llbracket A \rrbracket$ in $\lambda \Pi$.
2. If A is provable (is inhabited) in X then $\llbracket A \rrbracket$ is provable (is inhabited) in $\lambda \Pi$.
3. If X is inconsistent (every A is inhabited) then $\lambda \Pi$ is inconsistent (every $\llbracket A \rrbracket$ is inhabited).

What about the converse?

Soundness

1. Consistency: if X is consistent then $\lambda \Pi$ is consistent.

Soundness

1. Consistency: if X is consistent then $\lambda \Pi$ is consistent.
2. Conservativity: if $\llbracket A \rrbracket$ is provable in $\lambda \Pi$ then A is provable in X.

Soundness

1. Consistency: if X is consistent then $\lambda \Pi$ is consistent.
2. Conservativity: if $\llbracket A \rrbracket$ is provable in $\lambda \Pi$ then A is provable in X.
3. Adequacy: every (normal) proof in $\lambda \Pi$ corresponds to a proof in X.

Soundness

1. Consistency: if X is consistent then $\lambda \Pi$ is consistent.
2. Conservativity: if $\llbracket A \rrbracket$ is provable in $\lambda \Pi$ then A is provable in X.
3. Adequacy: every (normal) proof in $\lambda \Pi$ corresponds to a proof in X.

These are important properties for a logical framework!

Summary

- Source $=X$, Target $=\lambda \Pi$
- Embedding $=$ signature $\Sigma+$ translation [•]
- Completeness $=$ typing in $X \Longrightarrow$ typing in $\lambda \Pi$
- Soundness $=$ typing in $\lambda \Pi \Longrightarrow$ typing in X

Introduction

The framework

Embeddings in $\lambda \Pi$

Embeddings in $\lambda \Pi$-calculus modulo rewriting

Soundness in the $\lambda \Pi$-calculus modulo rewriting

Embedding pure type systems

Conclusion

Limitations of $\lambda \Pi$

The embedding does not preserve term (proof) reduction :

$$
M \longrightarrow \longrightarrow^{*} \quad \nRightarrow \quad[M] \longrightarrow^{*}\left[M^{\prime}\right]
$$

Limitations of $\lambda \Pi$

The embedding does not preserve term (proof) reduction :

$$
M \longrightarrow^{*} M^{\prime} \quad \nRightarrow \quad[M] \longrightarrow^{*}\left[M^{\prime}\right]
$$

The embedding does not preserve term (proof) equivalence:

$$
M \equiv M^{\prime} \quad \nRightarrow \quad[M] \equiv\left[M^{\prime}\right]
$$

Limitations of $\lambda \Pi$

Systems with dependent types (e.g. the calculus of constructions) have a conversion rule:

$$
\frac{\Gamma \vdash M: A \quad A \equiv B}{\Gamma \vdash M: B}
$$

$\ln \lambda \Pi, \llbracket\ulcorner\rrbracket \vdash[M]: \llbracket A \rrbracket$ but $\llbracket \Gamma \rrbracket \nvdash[M]: \llbracket B \rrbracket$ (no completeness).

Conversion in $\lambda \Pi$

Approach 1: Introduce explicit equivalence judgements and a conversion term:

$$
\begin{aligned}
\text { equiv } & : \text { type } \rightarrow \text { type } \rightarrow \text { Type } \\
\text { refl } & : \text { equiv } M M \\
\text { beta } & : \text { equiv }(\operatorname{app}(\operatorname{lam} F) N)(F N) \\
\ldots & \\
\text { conv } & : \text { term } A \rightarrow \text { equiv } A B \rightarrow \operatorname{term} B
\end{aligned}
$$

Cons:

- Need to explicitely give the equivalence derivations.
- Adding conv pollutes the structure of the terms and needs to be taken care of in the equivalence relation.

Conversion in $\lambda \Pi$

Approach 2: Translate typing derivations instead of λ-terms

$$
\begin{aligned}
\text { term } & : \text { Type } \\
\text { lam } & :(\text { term } \rightarrow \text { term }) \rightarrow \text { term }
\end{aligned}
$$

hastype : term \rightarrow type \rightarrow Type
typelam : $(\Pi x$: term. hastype $x A \rightarrow$ hastype $(F x) B) \rightarrow$ hastype (lam F) (arrow $A B$)

Pros:

- conv does not interfere with the structure of the λ-terms.

Cons:

- Lose Curry-Howard correspondence?
- Still need to explicitely give the equivalence derivations.

The $\lambda \Pi$-calculus modulo rewriting

Idea: extend the conversion rule of the $\lambda \Pi$-calculus with a rewrite system R :

$$
\frac{\Gamma \vdash M: A}{} \quad \Gamma \vdash B: \text { Type } \quad A \equiv_{\beta R} B
$$

The $\lambda \Pi$-calculus modulo rewriting

Idea: extend the conversion rule of the $\lambda \Pi$-calculus with a rewrite system R :

$$
\frac{\Gamma \vdash M: A}{} \quad \Gamma \vdash B: \text { Type } \quad A \equiv_{\beta R} B
$$

Add rewrite rules so that the translation preserves reduction.

The $\lambda \Pi$-calculus modulo rewriting

Idea: extend the conversion rule of the $\lambda \Pi$-calculus with a rewrite system R :

$$
\frac{\Gamma \vdash M: A \quad \Gamma \vdash B: \text { Type }}{} \quad A \equiv_{\beta R} B
$$

Add rewrite rules so that the translation preserves reduction (in addition to binding and typing).

Preserving reduction

Signature context Σ :

$$
\begin{aligned}
\text { type } & : \text { Type } \\
\text { arrow } & : \text { type } \rightarrow \text { type } \rightarrow \text { type } \\
& \\
\text { term } & : \text { type } \rightarrow \text { Type } \\
\text { lam } & :(\text { term } A \rightarrow \operatorname{term} B) \rightarrow \operatorname{term}(\operatorname{arrow} A B) \\
\text { app } & : \text { term }(\operatorname{arrow} A B) \rightarrow \operatorname{term} A \rightarrow \operatorname{term} B
\end{aligned}
$$

Rewrite rules R :

$$
\operatorname{app}(\operatorname{lam} F) N \longrightarrow F N
$$

Preserving reduction

Signature context \sum :

$$
\begin{aligned}
\text { type } & : \text { Type } \\
\text { arrow } & : \text { type } \rightarrow \text { type } \rightarrow \text { type } \\
& \\
\text { term } & : \text { type } \rightarrow \text { Type } \\
\text { lam } & :(\text { term } A \rightarrow \operatorname{term} B) \rightarrow \operatorname{term}(\operatorname{arrow} A B) \\
\text { app } & : \text { term }(\text { arrow } A B) \rightarrow \operatorname{term} A \rightarrow \operatorname{term} B
\end{aligned}
$$

Rewrite rules R :

$$
\begin{aligned}
\operatorname{term}(\operatorname{arrow} A B) & \longrightarrow \operatorname{term} A \rightarrow \operatorname{term} B \\
\operatorname{lam} F & \longrightarrow F \\
\operatorname{app} M N & \longrightarrow M N
\end{aligned}
$$

Preserving reduction

Signature context Σ :

$$
\begin{aligned}
\text { type } & : \text { Type } \\
\text { arrow } & : \text { type } \rightarrow \text { type } \rightarrow \text { type } \\
\text { term } & : \text { type } \rightarrow \text { Type }
\end{aligned}
$$

Rewrite rules R :

$$
\operatorname{term}(\operatorname{arrow} A B) \quad \longrightarrow \quad \operatorname{term} A \rightarrow \operatorname{term} B
$$

Translation:

$$
\begin{aligned}
{[\lambda x: A \cdot M] } & =\lambda x: \llbracket A \rrbracket \cdot[M] \\
{[M N] } & =[M][N]
\end{aligned}
$$

Preserving reduction

Theorem
If $M \longrightarrow M^{\prime}$ then $[M] \longrightarrow^{+}\left[M^{\prime}\right]$.

Preserving reduction

Theorem
If $M \longrightarrow M^{\prime}$ then $[M] \longrightarrow^{+}\left[M^{\prime}\right]$.
Corollary
If $M \longrightarrow{ }^{*} M^{\prime}$ then $[M] \longrightarrow{ }^{*}\left[M^{\prime}\right]$.

Preserving reduction

Theorem
If $M \longrightarrow M^{\prime}$ then $[M] \longrightarrow^{+}\left[M^{\prime}\right]$.
Corollary
If $M \longrightarrow{ }^{*} M^{\prime}$ then $[M] \longrightarrow{ }^{*}\left[M^{\prime}\right]$.
Corollary
If $M \equiv M^{\prime}$ then $[M] \equiv\left[M^{\prime}\right]$.

Completeness

Recovered typing preservation.
Theorem (Cousineau \& Dowek 2007)
If $\Gamma \vdash M$: A then $\Sigma, \llbracket\ulcorner\rrbracket \vdash[M]: \llbracket A \rrbracket$.
Works for any functional pure type system:

- System F
- Calculus of constructions
- Simple type theory

Completeness

Recovered typing preservation.
Theorem (Cousineau \& Dowek 2007)
If $\Gamma \vdash M: A$ then $\Sigma, \llbracket\ulcorner\rrbracket \vdash[M]: \llbracket A \rrbracket$.
Works for any functional pure type system:

- System F
- Calculus of constructions
- Simple type theory

What about soundness?

On termination and soundness

Link between termination and soundness:

- $\lambda \Pi$ is strongly normalizing

On termination and soundness

Link between termination and soundness:

- $\lambda \Pi$ is strongly normalizing
- Adding axioms (Σ) does not influence termination

On termination and soundness

Link between termination and soundness:

- $\lambda \Pi$ is strongly normalizing
- Adding axioms (Σ) does not influence termination
- Can be used to show soundness:
- Consistency: there is no normal term of type $\llbracket \perp \rrbracket$

On termination and soundness

Link between termination and soundness:

- $\lambda \Pi$ is strongly normalizing
- Adding axioms (Σ) does not influence termination
- Can be used to show soundness:
- Consistency: there is no normal term of type $\llbracket \perp \rrbracket$
- Adequacy: if $\llbracket\ulcorner\rrbracket \vdash M: \llbracket A \rrbracket$ and M is a normal form, then $M=[N]$ for some N such that $\Gamma \vdash N: A$

On termination and soundness

Link between termination and soundness:

- $\lambda \Pi$ is strongly normalizing
- Adding axioms (Σ) does not influence termination
- Can be used to show soundness:
- Consistency: there is no normal term of type $\llbracket \perp \rrbracket$
- Adequacy: if $\llbracket\ulcorner\rrbracket \vdash M: \llbracket A \rrbracket$ and M is a normal form, then $M=[N]$ for some N such that $\Gamma \vdash N: A$
- Conservativity: if $\llbracket\ulcorner\rrbracket \vdash M: \llbracket A \rrbracket$ then M reduces to a normal form $[N]$ for some N such that $\Gamma \vdash N: A$.

On termination and soundness

Adding rewrite rules (R) can break strong normalization:

- because \longrightarrow_{R} does not terminate

On termination and soundness

Adding rewrite rules (R) can break strong normalization:

- because \longrightarrow_{R} does not terminate
- or because $\longrightarrow_{R} \cup \longrightarrow_{\beta}$ does not terminate

On termination and soundness

Adding rewrite rules (R) can break strong normalization:

- because \longrightarrow_{R} does not terminate
- or because $\longrightarrow_{R} \cup \longrightarrow_{\beta}$ does not terminate
- or even because \longrightarrow_{β} does not terminate for well-typed terms

On termination and soundness

Adding rewrite rules (R) can break strong normalization:

- because \longrightarrow_{R} does not terminate
- or because $\longrightarrow_{R} \cup \longrightarrow_{\beta}$ does not terminate
- or even because \longrightarrow_{β} does not terminate for well-typed terms Need to find other solutions.

Summary

- $\lambda \Pi$ embeddings do not preserve reduction.
- Obstacle for embedding theories with dependent types.
- Adding rewrite rules to $\lambda \Pi$ helps recover completeness...
- ... but can break soundness.

Introduction

The framework

Embeddings in $\lambda \Pi$

Embeddings in $\lambda \Pi$-calculus modulo rewriting

Soundness in the $\lambda \Pi$-calculus modulo rewriting

Embedding pure type systems

Conclusion

Approach 1: models

Idea: build a model for $\lambda \Pi / X$

- in the algebra of reducibility candidates
- or in a general notion of Π-algebra.

Approach 1: models

Idea: build a model for $\lambda \Pi / X$

- in the algebra of reducibility candidates
- or in a general notion of Π-algebra.

The model implies strong normalization of $\lambda \Pi / X$. Use this to prove soundness (consistency, adequacy, conservativity).

Approach 1: models

Idea: build a model for $\lambda \Pi / X$

- in the algebra of reducibility candidates
- or in a general notion of Π-algebra.

The model implies strong normalization of $\lambda \Pi / X$. Use this to prove soundness (consistency, adequacy, conservativity).
Theorem (Dowek 2014)
There is a model for $\lambda \Pi / \mathbb{S T T}$ and for $\lambda \Pi / \mathbb{C O C}$.

Approach 1: models

Idea: build a model for $\lambda \Pi / X$

- in the algebra of reducibility candidates
- or in a general notion of Π-algebra.

The model implies strong normalization of $\lambda \Pi / X$. Use this to prove soundness (consistency, adequacy, conservativity).
Theorem (Dowek 2014)
There is a model for $\lambda \Pi / \mathbb{S T T}$ and for $\lambda \Pi / \mathbb{C O C}$.
Problem: implies strong normalization in X, so at least as hard to prove as strong normalization in X.

Approach 2: relative normalization

If $\llbracket\ulcorner\rrbracket \vdash M: \llbracket A \rrbracket$, what can we say about M ?

Approach 2: relative normalization

If $\llbracket\ulcorner\rrbracket \vdash M: \llbracket A \rrbracket$, what can we say about M ?
Example
If X is the simply-typed λ-calculus, the polymorphic identity function is not well-typed:

$$
\beta: \text { Type } \forall(\lambda \alpha: \text { Type. } \lambda x: \alpha . x) \beta: \beta \rightarrow \beta
$$

It is well-typed in $\lambda \Pi / X$:
$\beta:$ type $\vdash(\lambda \alpha:$ type. $\lambda x: \operatorname{term} \alpha . x) \beta:$ term $\beta \rightarrow \operatorname{term} \beta$

Approach 2: relative normalization

If $\llbracket\ulcorner\rrbracket \vdash M: \llbracket A \rrbracket$, what can we say about M ?
Example
If X is the simply-typed λ-calculus, the polymorphic identity function is not well-typed:

$$
\beta: \operatorname{Type} \nvdash(\lambda \alpha: \text { Type. } \lambda x: \alpha \cdot x) \beta: \beta \rightarrow \beta
$$

It is well-typed in $\lambda \Pi / X$:

$$
\beta: \operatorname{type} \vdash(\lambda \alpha: \operatorname{type} . \lambda x: \operatorname{term} \alpha \cdot x) \beta: \operatorname{term} \beta \rightarrow \operatorname{term} \beta
$$

But it reduces to $\lambda x:$ term $\beta \cdot x=[\lambda x: \beta \cdot x]$, a term that is well-typed in X.

Approach 2: relative normalization

If $\llbracket\ulcorner\rrbracket \vdash M: \llbracket A \rrbracket$, what can we say about M ?
Example
If X is the simply-typed λ-calculus, the polymorphic identity function is not well-typed:

$$
\beta: \operatorname{Type} \nvdash(\lambda \alpha: \text { Type. } \lambda x: \alpha \cdot x) \beta: \beta \rightarrow \beta
$$

It is well-typed in $\lambda \Pi / X$:

$$
\beta: \operatorname{type} \vdash(\lambda \alpha: \operatorname{type} . \lambda x: \operatorname{term} \alpha \cdot x) \beta: \operatorname{term} \beta \rightarrow \operatorname{term} \beta
$$

But it reduces to $\lambda x:$ term $\beta \cdot x=[\lambda x: \beta \cdot x]$, a term that is well-typed in X.
Idea: reduce only what is necessary.

Erasure

Define an erasure from $\lambda \Pi / X$ to X :

$$
\begin{aligned}
|x| & =x \\
|\lambda x: A \cdot M| & =\lambda x:\|A\| \cdot|M| \\
|M N| & =|M||N| \\
\| \text { type } \| & =\text { Type } \\
\| \text { term } A \| & =|A| \\
\|A \rightarrow B\| & =\|A\| \rightarrow\|B\|
\end{aligned}
$$

Erasure is the inverse of the translation:

$$
\begin{aligned}
|[M]| & =M \\
\|\llbracket A \rrbracket\| & =A
\end{aligned}
$$

Proving soundness

What statement should we prove?

- If $\llbracket\ulcorner\rrbracket \vdash M: \llbracket A \rrbracket$ in $\lambda \Pi / X$ then $\Gamma \vdash|M|: A$ in X ?

Proving soundness

What statement should we prove?

- $\| \llbracket \Gamma \rrbracket \perp M: \llbracket A \rrbracket$ in $\lambda \Pi / X$ then $\Gamma \vdash|M|: A$ in X ?
$\beta:$ type $\vdash(\lambda \alpha:$ type. $\lambda x: \operatorname{term} \alpha . x) \beta:$ term $\beta \rightarrow \operatorname{term} \beta$

Proving soundness

What statement should we prove?

- $f \llbracket \Gamma \ddagger M: \llbracket A \rrbracket$ in $\lambda \Pi / X$ then $\Gamma \vdash|M|: A$ in X ?
$\beta:$ type $\vdash(\lambda \alpha:$ type. $\lambda x: \operatorname{term} \alpha . x) \beta:$ term $\beta \rightarrow \operatorname{term} \beta$
- If $\llbracket\left\ulcorner\rrbracket \vdash M: \llbracket A \rrbracket\right.$ in $\lambda \Pi / X$ then $M \longrightarrow * M^{\prime}$ such that
$\Gamma \vdash\left|M^{\prime}\right|: A$ in X ?

Proving soundness

What statement should we prove?

- $\| \llbracket \Gamma \rrbracket \mid M: \llbracket A \rrbracket$ in $\lambda \Pi / X$ then $\Gamma \vdash|M|: A$ in X ?
$\beta:$ type $\vdash(\lambda \alpha:$ type. $\lambda x: \operatorname{term} \alpha . x) \beta:$ term $\beta \rightarrow \operatorname{term} \beta$
- $¥ \llbracket \Gamma \rrbracket \mid=M: \llbracket M \rrbracket$ in $\lambda \Pi / X$ then $M,^{*} M^{\prime}$ such that $\Gamma \vDash\left|M^{\prime}\right|: \Lambda$ in X ?

$$
\frac{\llbracket\ulcorner\rrbracket \vdash M: \Pi x: A \cdot \llbracket B \rrbracket \quad \llbracket \Gamma \rrbracket \vdash N: A}{\llbracket\ulcorner\rrbracket \vdash M N: \llbracket B \rrbracket}
$$

Proving soundness

What statement should we prove?

- If $\llbracket \Gamma \rrbracket \vdash M: A$ in $\lambda \Pi / X$ then $M \longrightarrow{ }^{*} M^{\prime}$ and $A \longrightarrow{ }^{*} A^{\prime}$ such that $\Gamma \vdash\left|M^{\prime}\right|:\left\|A^{\prime}\right\|$ in X ?

Proving soundness

What statement should we prove?

- $f \llbracket \Gamma \rrbracket+M: A$ in $\lambda \Pi / X$ then $M \longrightarrow{ }^{*} M^{\prime}$ and $A \longrightarrow{ }^{*} A^{\prime}$ such that $\Gamma \vDash\left|M^{\prime}\right|:\left\|A^{\prime}\right\|$ in X ?

$$
\frac{\llbracket \Gamma \rrbracket, x: A \vdash M: B}{\llbracket\ulcorner\rrbracket \vdash \lambda x: A \cdot M: \Pi x: A \cdot B}
$$

Proving soundness

What statement should we prove?

- $f \llbracket \Gamma \rrbracket+M: A$ in $\lambda \Pi / X$ then $M \longrightarrow{ }^{*} M^{\prime}$ and $A \longrightarrow{ }^{*} A^{\prime}$ such that $\Gamma \vDash\left|M^{\prime}\right|:\left\|A^{\prime}\right\|$ in X ?

$$
\frac{\llbracket\ulcorner\rrbracket, x: A \vdash M: B}{\llbracket\ulcorner\rrbracket \vdash \lambda x: A \cdot M: \Pi x: A \cdot B}
$$

- If $\Gamma \vdash M: A$ in $\lambda \Pi / X$ then $\Gamma \longrightarrow{ }^{*} \Gamma^{\prime}, M \longrightarrow{ }^{*} M^{\prime}$, and $A \longrightarrow{ }^{*} A^{\prime}$ such that $\left\|\Gamma^{\prime}\right\| \vdash\left|M^{\prime}\right|:\left\|A^{\prime}\right\|$ in X ?

Proving soundness

What statement should we prove?

- $f \llbracket \Gamma \rrbracket \perp M: A$ in $\lambda \Pi / X$ then $M \longrightarrow{ }^{*} M^{\prime}$ and $A \longrightarrow \rightarrow^{*} A^{\prime}$ such that $\Gamma \vDash\left|M^{\prime}\right|:\left\|A^{\prime}\right\|$ in X ?

$$
\frac{\llbracket\ulcorner\rrbracket, x: A \vdash M: B}{\llbracket\ulcorner\rrbracket \vdash \lambda x: A \cdot M: \Pi x: A \cdot B}
$$

- If $\Gamma \vdash M: A$ in $\lambda \Pi / X$ then $\Gamma \longrightarrow \Gamma^{\prime}, M \longrightarrow M^{\prime}$, and $A \rightarrow^{*} A^{\prime}$ such that $\left\|\Gamma^{\prime}\right\| \vdash\left|M^{\prime}\right|:\left\|A^{\prime}\right\|$ in X ?
$\vdash \lambda \alpha$: type. λx : term $\alpha . x: \Pi \alpha:$ type. term $\beta \rightarrow \operatorname{term} \beta$

Proving soundness

What have we learned?

1. $\lambda \Pi / X$ can type more terms than X.
2. These terms can be used to construct proofs for the translation of X types.
3. The $\lambda \Pi / X$ terms that inhabit the translation of X types can be reduced to the translation of X terms.

Proving soundness

What have we learned?

1. $\lambda \Pi / X$ can type more terms than X.
2. These terms can be used to construct proofs for the translation of X types.
3. The $\lambda \Pi / X$ terms that inhabit the translation of X types can be reduced to the translation of X terms.
Need higher-order reasonning.

Reducibility method

Let Γ^{\prime} be a context in X. Define the predicate $\Gamma^{\prime} \vDash M: A$ by induction on A :

Reducibility method

Let Γ^{\prime} be a context in X. Define the predicate $\Gamma^{\prime} \vDash M: A$ by induction on A :

- If $A=$ type then $\Gamma^{\prime} \vDash M: A$ when $M \longrightarrow{ }^{*} M^{\prime}$ such that $\Gamma^{\prime} \vdash\left|M^{\prime}\right|$: Type.

Reducibility method

Let Γ^{\prime} be a context in X. Define the predicate $\Gamma^{\prime} \vDash M: A$ by induction on A :

- If $A=$ type then $\Gamma^{\prime} \vDash M: A$ when $M \longrightarrow{ }^{*} M^{\prime}$ such that $\Gamma^{\prime} \vdash\left|M^{\prime}\right|$: Type.
- If $A=\operatorname{term} B$ then $\Gamma^{\prime} \vDash M: A$ when $M \longrightarrow M^{\prime}$ and $B \longrightarrow^{*} B^{\prime}$ such that $\Gamma^{\prime} \vdash\left|M^{\prime}\right|:\left|B^{\prime}\right|$.

Reducibility method

Let Γ^{\prime} be a context in X. Define the predicate $\Gamma^{\prime} \vDash M: A$ by induction on A :

- If $A=$ type then $\Gamma^{\prime} \vDash M: A$ when $M \longrightarrow{ }^{*} M^{\prime}$ such that $\Gamma^{\prime} \vdash\left|M^{\prime}\right|$: Type.
- If $A=\operatorname{term} B$ then $\Gamma^{\prime} \vDash M: A$ when $M \longrightarrow M^{\prime}$ and $B \longrightarrow^{*} B^{\prime}$ such that $\Gamma^{\prime} \vdash\left|M^{\prime}\right|:\left|B^{\prime}\right|$.
- If $A=\Pi x: B . C$ then $\Gamma^{\prime} \vDash M: A$ when for for all N such that $\Gamma^{\prime} \vDash N: B, \Gamma^{\prime} \vDash M N:\{N / x\} C$.

Reducibility method

Let Γ^{\prime} be a context in X. Define the predicate $\Gamma^{\prime} \vDash M: A$ by induction on A :

- If $A=$ type then $\Gamma^{\prime} \vDash M: A$ when $M \longrightarrow{ }^{*} M^{\prime}$ such that $\Gamma^{\prime} \vdash\left|M^{\prime}\right|$: Type.
- If $A=\operatorname{term} B$ then $\Gamma^{\prime} \vDash M: A$ when $M \longrightarrow M^{\prime}$ and $B \longrightarrow^{*} B^{\prime}$ such that $\Gamma^{\prime} \vdash\left|M^{\prime}\right|:\left|B^{\prime}\right|$.
- If $A=\Pi x: B . C$ then $\Gamma^{\prime} \vDash M: A$ when for for all N such that $\Gamma^{\prime} \vDash N: B, \Gamma^{\prime} \vDash M N:\{N / x\} C$.

If σ is a substitution mapping variables to terms:

- $\Gamma^{\prime} \vDash \sigma: \Gamma$ when $\Gamma^{\prime} \vDash \sigma(x): \sigma(A)$ for all $(x: A) \in \Gamma$

Soundness

Theorem (Assaf 2013)
If $\Gamma \vdash M: A$ in $\lambda \Pi / X$ then for any X context Γ^{\prime} and substitution σ such that $\Gamma^{\prime} \vDash \sigma: \Gamma, \Gamma^{\prime} \vDash \sigma(M): \sigma(A)$.

Proof.
By induction on the derivation of $\Gamma \vdash M: A$.

Soundness

Theorem (Assaf 2013)
If $\Gamma \vdash M: A$ in $\lambda \Pi / X$ then for any X context Γ^{\prime} and substitution σ such that $\Gamma^{\prime} \vDash \sigma: \Gamma, \Gamma^{\prime} \vDash \sigma(M): \sigma(A)$.

Proof.
By induction on the derivation of $\Gamma \vdash M: A$.
Corollary (Conservativity)
If $\llbracket\left\ulcorner\vdash M: \llbracket A \rrbracket\right.$ then $M \longrightarrow{ }^{*} M^{\prime}$ such that $\Gamma \vdash\left|M^{\prime}\right|: A$.
Proof.
By taking the identity substitution, $\|\sigma(\llbracket A \rrbracket)\|=\|\llbracket A \rrbracket\|=A$.

Relative normalization

- Avoid complex techniques such as reducibility candidates.
- Works for non-terminating theories!
- For pure type systems, $\lambda \Pi / X$ corresponds to a conservative completion of X.

Summary

- Strong normalization $=$ all terms in $\lambda \Pi / X$ are strongly normalizing
- Proved using termination models
- Relative normalization $=$ terms in $\lambda \Pi / X$ can be reduced to terms in X.
- Proved by using reducibility on a more general statement
- Both approaches show conservativity of $\lambda \Pi / X$

Introduction

The framework

Embeddings in $\lambda \Pi$

Embeddings in $\lambda \Pi$-calculus modulo rewriting

Soundness in the $\lambda \Pi$-calculus modulo rewriting

Embedding pure type systems

Conclusion

Pure type systems

Specification $S=(\mathcal{S}, \mathcal{A}, \mathcal{R})$

- \mathcal{S} a set of sorts
- $\mathcal{A} \subseteq \mathcal{S} \times \mathcal{S}$ a set of axioms
- $\mathcal{R} \subseteq S \times \mathcal{S} \times \mathcal{S}$ a set of rules

Syntax

sorts	s	$\in \mathcal{S}$
terms	M, N, A, B	$::=x\|s\| \Pi x: A . B\|\lambda x: A . M\| M N$
contexts	Γ	$::=\cdot \mid \Gamma, x: A$

Typing rules

$$
\frac{(x: A) \in \Gamma}{\Gamma \vdash x: A} \quad \frac{\left(s_{1}, s_{2}\right) \in \mathcal{A}}{\Gamma \vdash s_{1}: s_{2}}
$$

$\frac{\Gamma \vdash A: s_{1} \quad \Gamma, x: A \vdash B: s_{2} \quad\left(s_{1}, s_{2}, s_{3}\right) \in \mathcal{R}}{\Gamma \vdash \Pi x: A \cdot B: s_{3}}$

$$
\begin{aligned}
& \frac{\Gamma \vdash \Pi x: A . B: s \quad \Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda x: A \cdot M: \Pi x: A . B} \\
& \frac{\Gamma \vdash M: \Pi x: A \cdot B \quad \Gamma \vdash N: A}{\Gamma \vdash M N:\{N / x\} B} \\
& \frac{\Gamma \vdash M: A \quad \Gamma \vdash B: s \quad A \equiv B}{\Gamma \vdash M: B}
\end{aligned}
$$

Example

Example

The calculus of constructions (COC) is the PTS defined by the signature:

$$
\begin{aligned}
\mathcal{S}= & \text { Type, Kind } \\
\mathcal{A}= & (\text { Type, Kind }) \\
\mathcal{R}= & (\text { Type, Type, Type), (Kind, Type, Type) }, \\
& (\text { Type, Kind, Kind), (Kind, Kind, Kind) }
\end{aligned}
$$

The polymorphic identity function $\mathrm{id}=(\lambda \alpha:$ Type. $\lambda x: \alpha . x)$ is well-typed in COC:

$$
\vdash \text { id }:(\Pi \alpha: \text { Type. } \alpha \rightarrow \alpha)
$$

Example

Example

Simple type theory is (STT) is the PTS defined by the signature:
$\mathcal{S}=$ Prop, Type, Kind
$\mathcal{A}=($ Prop, Type) $($ Type, Kind)
$\mathcal{R}=$ (Prop, Prop, Prop), (Type, Prop, Prop), (Type, Type, Type)

Translations

- $\lambda \Pi$-calculus: types may only depend on terms
- PTS: terms and types may depend on types (polymorphism, type operators)

Translations

- $\lambda \Pi$-calculus: types may only depend on terms
- PTS: terms and types may depend on types (polymorphism, type operators)

Tarski style universes (Palmgren 1988): two representations

- $[A]$ as a term
- $\llbracket A \rrbracket$ as a type

Two Translations

As a type:
$-\llbracket s \rrbracket=U_{s}$, the symbol for the universe of types s

- $\llbracket \Pi x: A . B \rrbracket=\Pi x: \llbracket A \rrbracket \cdot \llbracket B \rrbracket$

Two Translations

As a type:
$-\llbracket s \rrbracket=U_{s}$, the symbol for the universe of types s

- $\llbracket \Pi x: A . B \rrbracket=\Pi x: \llbracket A \rrbracket \cdot \llbracket B \rrbracket$

As a term:

- $[s]=u_{s}$, a constant
- $[\Pi x: A . B]=\pi[A](\lambda x: \llbracket A \rrbracket \cdot[B])$

Decoding function

- Decoding function T

$$
\llbracket A \rrbracket=\mathrm{T}[A]
$$

Decoding function

- Decoding function T

$$
\llbracket A \rrbracket=\mathrm{T}[A]
$$

- Constraints:

$$
\begin{array}{ccc}
\llbracket s \rrbracket & = & U_{s} \\
\llbracket \Pi x: A \cdot B \rrbracket & = & \Pi x: \llbracket A \rrbracket \cdot \llbracket B \rrbracket
\end{array}
$$

Decoding function

- Decoding function T

$$
\llbracket A \rrbracket=\mathrm{T}[A]
$$

- Constraints:

$$
\begin{array}{clc}
\mathrm{T}[s] & = & \mathrm{U}_{s} \\
\mathrm{~T}[(\Pi x: A \cdot B)] & = & \Pi x: \mathrm{T} A \cdot \mathrm{~T} B
\end{array}
$$

Decoding function

- Decoding function T

$$
\llbracket A \rrbracket=\mathrm{T}[A]
$$

- Constraints:

$$
\begin{array}{ccc}
\mathrm{T} \mathrm{u}_{s} & \longrightarrow & \mathrm{U}_{s} \\
\mathrm{~T}(\pi A B) & \longrightarrow & \Pi x: \mathrm{T} A \cdot \mathrm{~T}(B x)
\end{array}
$$

The embedding

Constants

$$
\begin{array}{lll}
\mathrm{U}_{s} & : \text { Type } & \forall s \in \mathcal{S} \\
\mathrm{~T}_{s} & : \mathrm{U}_{s} \rightarrow \text { Type } & \forall s \in \mathcal{S} \\
\mathrm{u}_{s_{1}} & : \mathrm{U}_{s_{2}} & \forall\left(s_{1}, s_{2}\right) \in \mathcal{A} \\
\pi_{s_{1}, s_{2}, s_{3}} & : \Pi \alpha: \mathrm{U}_{s_{1}} \cdot\left(\mathrm{~T}_{s_{1}} \alpha \rightarrow \mathrm{U}_{s_{2}}\right) \rightarrow \mathrm{U}_{s_{3}} & \forall\left(s_{1}, s_{2}, s_{3}\right) \in \mathcal{R}
\end{array}
$$

Rewrite rules

$\mathrm{T}_{s_{2}} \dot{s}_{1}$	$\longrightarrow s_{1}$	$\forall\left(s_{1}, s_{2}\right) \in \mathcal{A}$
$\mathrm{T}_{s_{3}}\left(\pi_{s_{1}, s_{2}, s_{3}} \alpha \beta\right)$	\longrightarrow	$\Pi x: \mathrm{T}_{s_{1}} \alpha . \mathrm{T}_{s_{2}}(\beta x)$

The embedding

$$
\begin{aligned}
{[x] } & =x \\
{[s] } & =u_{s} \\
{[\Pi x: A \cdot B] } & =\pi_{s_{1}, s_{2}, s_{3}}[A][B] \\
{[\lambda x: A . M] } & =x_{x}: \llbracket A \rrbracket \cdot[M] \\
{[M N] } & =[M][N] \\
\llbracket s \rrbracket & =U_{s} \\
\llbracket \llbracket x: A . B \rrbracket & =\Pi x: \llbracket A \rrbracket \cdot \llbracket B \rrbracket \\
\llbracket A \rrbracket & =\mathrm{T}_{\mathrm{s}}[A]
\end{aligned}
$$

Infinite universe hierarchy

In MLTT, Coq, Agda:

$$
U_{0}: U_{1}: U_{2}: \ldots
$$

Infinite universe hierarchy

In MLTT, Coq, Agda:

$$
\mathrm{U}_{0}: \mathrm{U}_{1}: \mathrm{U}_{2}: \ldots
$$

In $\lambda \Pi$-calculus modulo:

| $\mathrm{U}_{i}:$ Type | $\forall i \in \mathbb{N}$ |
| :--- | :--- | :--- |
| $\mathrm{~T}_{i}: \mathrm{U}_{i} \rightarrow$ Type | $\forall i \in \mathbb{N}$ |
| $\mathrm{u}_{i}: \mathrm{U}_{i+1}$ | $\forall i \in \mathbb{N}$ |
| $\pi_{i}: \Pi \alpha: \mathrm{U}_{i} \cdot\left(\left(\mathrm{~T}_{i} \alpha \rightarrow \mathrm{U}_{i}\right)\right) \rightarrow \mathrm{U}_{i}$ | $\forall i \in \mathbb{N}$ |

Infinite universe hierarchy

In MLTT, Coq, Agda:

$$
\mathrm{U}_{0}: \mathrm{U}_{1}: \mathrm{U}_{2}: \ldots
$$

In $\lambda \Pi$-calculus modulo:
U : nat \rightarrow Type
T : $\Pi i:$ nat. U $i \rightarrow$ Type
$\mathrm{u}: \Pi i:$ nat. $\mathrm{U}(i+1)$
$\pi: \quad \Pi i:$ nat. $\Pi \alpha: \cup i .((\mathrm{T} i \alpha \rightarrow \mathrm{U} i)) \rightarrow \mathrm{U} i$

Cumulativity

In MLTT, Coq:

$$
\frac{\Gamma \vdash A: U_{i}}{\Gamma \vdash A: U_{i+1}}
$$

Cumulativity

In MLTT, Coq:

$$
\frac{\Gamma \vdash A: U_{i}}{\Gamma \vdash A: U_{i+1}}
$$

In $\lambda \Pi$-calculus modulo:

$$
\begin{gathered}
\uparrow_{i}: \mathrm{U}_{i} \rightarrow \mathrm{U}_{i+1} \\
\mathrm{~T}_{\mathrm{i}+1}\left(\uparrow_{i} A\right) \longrightarrow \mathrm{T}_{i} A
\end{gathered}
$$

Cumulativity

In MLTT, Coq:

$$
\frac{\Gamma \vdash A: U_{i}}{\Gamma \vdash A: U_{i+1}}
$$

In $\lambda \Pi$-calculus modulo:

$$
\begin{gathered}
\uparrow_{i}: \mathrm{U}_{i} \rightarrow \mathrm{U}_{i+1} \\
\mathrm{~T}_{\mathrm{i}+1}\left(\uparrow_{i} A\right) \longrightarrow \mathrm{T}_{i} A
\end{gathered}
$$

Warning: need to reflect equality for completeness

Summary

In $\lambda \Pi$-calculus modulo, can embed:

- functional pure type systems
- infinite type hierarchies
- cumulativity
and much more!

Introduction

The framework

Embeddings in $\lambda \Pi$

Embeddings in $\lambda \Pi$-calculus modulo rewriting

Soundness in the $\lambda \Pi$-calculus modulo rewriting

Embedding pure type systems

Conclusion

Conclusion

- Universal proof framework based on $\lambda \Pi$-calculus modulo
- Sound and complete embeddings that preserve the reduction semantics
- Automated translation and verification
- Coqine: Coq proofs in Dedukti
- Holide: HOL Light proofs in Dedukti
- Zenonide: Zenon traces in Dedukti
- Focalide: Focalize specifications in Dedukti

Future work

- Universal proof framework?
- Classical logic without double negation?
- Linear logic?
- Intersection types?

Tack!

Bibliography

Denis Cousineau and Gilles Dowek, Embedding pure type systems in the lambda-Pi calculus modulo, TLCA 2007.
R Mathieu Boespflug, Quentin Carbonneaux and Olivier Hermant, The lambda-Pi calculus modulo as a universal proof language, PXTP 2012.
Ronan Saillard, Towards explicit rewrite rules in the lambda-Pi calculus modulo, IWIL 2013.
R Ali Assaf, Conservativity of embeddings in the lambda-Pi calculus modulo, draft.
囯 Ali Assaf, A calculus of constructions with explicit subtyping, draft.
嗇 Gilles Dowek, Models and termination of proof-reduction in the lambda-Pi calculus modulo theory, draft.

