Embedding logics in the All-calculus modulo
rewriting

Ali Assaf
Inria Paris-Rocquencourt (Deducteam)
Ecole polytechnique

Stockholm logic seminar
October 21, 2014

Introduction

Motivation

Many different proof assistants:
» HOL Light
» Coq
> Mizar

|

Motivation

Many different proof assistants:
» HOL Light
» Coq
» Mizar
> .
Many different formalisms:
» Simple type theory
» Calculus of inductive constructions

» Set theory

> ...

Motivation

A universal proof checker: Dedukti

PVS

o,

Dedukti

HOL Coq

Motivation

A universal proof checker: Dedukti

PVS

o,

Dedukti

HOL Coq

A universal framework: the Al-calculus modulo rewriting

Universal proof checker

Source: HOL, Coq, ...
» Pure type systems, inductive types, universes...
» Proof reconstruction, proof search, ...

Target: Dedukti

» Al-calculus modulo rewriting

» Proof checking (no proof reconstruction, no proof search, ...

The framework

Deduction modulo

First-order logic modulo congruence

r-A A=B
N-B

A theory is expressed by axioms + rewrite rules

Deduction modulo

First-order logic modulo congruence

r-A A=B
N-B

A theory is expressed by axioms + rewrite rules

Example
The property
VxVy,sx =sy <= x=y

can be expressed by the rewrite rule

SX =Sy —Xx=y

Deduction modulo

First-order logic modulo congruence

r-A A=B
N-B

A theory is expressed by axioms + rewrite rules

Example
The property
VxVy,sx =sy <= x=y

can be expressed by the rewrite rule

SX =Sy —Xx=y

Idea: replace axioms by rewrite rules
» Give computational meaning

» Preserve constructivism (disjunction & witness property)

From deduction modulo to Al-modulo

Curry-Howard correspondence
» Propositions <— types
» Proofs «+— terms

From deduction modulo to Al-modulo

Curry-Howard correspondence
» Propositions <— types
» Proofs «+— terms

Minimal first-order logic: AlN-calculus
» Congruence modulo 3

» Implemented in Twelf

From deduction modulo to Al-modulo

Curry-Howard correspondence
» Propositions <— types
» Proofs «+— terms
Minimal first-order logic: AlN-calculus
» Congruence modulo 3
» Implemented in Twelf
Minimal deduction modulo: Al-calculus modulo rewriting
» Congruence modulo SR

» Implemented in Dedukti

The All-calculus modulo rewriting

An extension of the Al-calculus with rewrite rules
» Typed A-calculus (Curry-Howard correspondence)
» Dependent types

» Rewriting to express equivalence

The All-calculus modulo rewriting

An extension of the All-calculus with rewrite rules
» Typed A-calculus (Curry-Howard correspondence)
» Dependent types
» Rewriting to express equivalence
A variation of the logical framework of Martin-L6f
» Equalities oriented into rewrite rules
» Confluence + normalization = decidable checking
» Efficient checking algorithm (Boespflug 2012, Saillard 2013)

Martin-Lof's logical framework

Type formation: A Type

A Type B Type
A x B Type

Term formation (intro/elim): M : A

M: A N:A
(M;N): Ax B

M:AxB M:AxB
fstM: A snd M : B

Martin-Lo6f's logical framework

Type equality: A= B
Ti+1 u, = U,‘

Term equality: M=N: A

fst(M,N)=M: A snd(M,N)=N:B

Towards formalism

Variables:
» explicit context I

Avrities:
> currying Ay — ...~ A, — B
» kinds Ay — ... > A, — Type

» unifying terms and types

Syntax

sorts s = Type | Kind
terms ABMN = x|s|Mx:AB|Ax:AM|MN

contexts [n= | Mx: A

Typing rules

(x:A)erl

MN-x:A I+ Type : Kind

= A: Type x:AFB:s
N=Tx:A.B:s

M= A: Type MNx:A-M:B
IEXx:AM:Tix: A B

Fr=M:TMx:AB FrM=N:A
' MN:{N/x}B

r=M:A =B:s A=B

r'-mMm:B

Restrictions on rewrite rules

(NHM— N

Restrictions on rewrite rules

nNn™M-—N
Restrictions:
> Subject reduction for —gr: THEFM:Aand TH N: A

Restrictions on rewrite rules

nNn™M-—N
Restrictions:
> Subject reduction for —gr: THEFM:Aand TH N: A

» Confluence for —gr: FV (N) C FV (M) + no divergent
critical pair

Restrictions on rewrite rules

nNn™M-—N
Restrictions:
> Subject reduction for —gr: THEFM:Aand TH N: A

» Confluence for —gr: FV (N) C FV (M) + no divergent
critical pair

» Normalization for —sgg: 777

Summary

» Al-calculus modulo = dependent types + rewrite rules

» Decidable type-checking under certain conditions

Embeddings in Al

Using AIT as a logical framework

Logical framework in Wikipedia:

In logic, a logical framework provides a means to define
(or present) a logic as a signature in a higher-order type
theory in such a way that provability of a formula in the
original logic reduces to a type inhabitation problem in
the framework type theory.

Using AIT as a logical framework

Logical framework in Wikipedia:

In logic, a logical framework provides a means to define
(or present) a logic as a signature in a higher-order type
theory in such a way that provability of a formula in the
original logic reduces to a type inhabitation problem in
the framework type theory.

To embed a given theory X in All, one must:

1. define a signature context X in Al describing the theory X

2. define a translation from the terms of X to the terms of Al in
the context X.

System F in ATl

Define the signature context X as:

type : Type

arrow : type — type — type

forall : (type — type) — type

term : type — Type

lam : (term A — term B) — term (arrow A B)
app : term(arrow AB) — term A — term B

Lam : (MA: type.term (F A)) — term (forall F)
App : term(forall F) — MNA: type.term (F A)

System F in ATl

Translate the types and the terms as:

[a] = «
[A— B] arrow [A] [B]
[Va : Type.B] = forall (Aa : type. [B])

] = x
[Ax : A-M] = lam(Ax : term [A]. [M])
[MN] = app[M][N]
[Aa: Type. M] = Lam (A« : type. [M])
[M(A)] = App[M][A]

System F in ATl

Example
The identity function id = A« : Type. Ax : a. x is translated as:

[i[d] = Lam (A« : type.lam (Ax : term o x))
The type A = Va : Type.a — « is translated as:

[A] = forall (A« : type. arrow o)

Completeness

If M is well-typed then [M] is well-typed in the context X:

FM:A = Xk [M]:terml[A]

Completeness

If M is well-typed then [M] is well-typed in the context X:
FM:A = Xk [M]:terml[A]
Define [A] = term [A]:

FM:A = T+[M]:[A]

Completeness

If M is well-typed then [M] is well-typed in the context X:
FM:A = Xk [M]:terml[A]
Define [A] = term [A]:
FM:A = X +[M]:[A]
If M is well-typed in ' then [M] is well-typed in the context ¥, [I']:

M-M:A = [+ [M]:[A]

System F in ATl

Example
The self-application of id is well-typed in the empty context:

Hid (A)id: A
Its translation is well-typed in X:

% - app (App [id] [A]) [id] - [A]

Completeness

1. If M is a proof of (has type) A in X then [M] is a proof of
(has type) [A] in AIN.

Completeness

1. If M is a proof of (has type) A in X then [M] is a proof of
(has type) [A] in AIN.

2. If Ais provable (is inhabited) in X then [A] is provable (is
inhabited) in AlN.

Completeness

1. If M is a proof of (has type) A in X then [M] is a proof of
(has type) [A] in AIN.

2. If Ais provable (is inhabited) in X then [A] is provable (is
inhabited) in AlN.

3. If X is inconsistent (every A is inhabited) then Al is
inconsistent (every [A] is inhabited).

Completeness

1. If M is a proof of (has type) A in X then [M] is a proof of
(has type) [A] in AIN.

2. If Ais provable (is inhabited) in X then [A] is provable (is
inhabited) in AlN.

3. If X is inconsistent (every A is inhabited) then Al is
inconsistent (every [A] is inhabited).

What about the converse?

Soundness

1. Consistency: if X is consistent then AI is consistent.

Soundness

1. Consistency: if X is consistent then AI is consistent.

2. Conservativity: if [A] is provable in Al then A is provable in
X.

Soundness

1. Consistency: if X is consistent then AI is consistent.

2. Conservativity: if [A] is provable in Al then A is provable in
X.

3. Adequacy: every (normal) proof in Al corresponds to a proof
in X.

Soundness

1. Consistency: if X is consistent then AI is consistent.

2. Conservativity: if [A] is provable in Al then A is provable in
X.

3. Adequacy: every (normal) proof in Al corresponds to a proof
in X.

These are important properties for a logical framework!

Summary

v

Source = X, Target = A1
Embedding = signature ¥ + translation []

v

v

Completeness = typing in X = typing in Al

v

Soundness = typing in A\l = typing in X

Embeddings in All-calculus modulo rewriting

Limitations of Al

The embedding does not preserve term (proof) reduction :

M—*M =5 [M]—* [M]

Limitations of Al

The embedding does not preserve term (proof) reduction :
M—*M =5 [M]—* [M]
The embedding does not preserve term (proof) equivalence:

M=M =5 [M=[M]

Limitations of Al

Systems with dependent types (e.g. the calculus of constructions)
have a conversion rule:

rN=M:A A=B
r'-M:B

In A, [T]F [M]: [A] but [T'] ¥ [M]: [B] (no completeness).

Conversion in Al

Approach 1: Introduce explicit equivalence judgements and a

conversion term:
equiv
refl
beta

conv

Cons:

type — type — Type
equiv M M
equiv (app (lam F) N) (F N)

term A — equivAB — term B

» Need to explicitely give the equivalence derivations.

» Adding conv pollutes the structure of the terms and needs to
be taken care of in the equivalence relation.

Conversion in Al

Approach 2: Translate typing derivations instead of A-terms

term

lam

hastype
typelam

Pros:

Type
(term — term) — term

term — type — Type
(Mx : term. hastype x A — hastype (F x) B) —
hastype (lam F) (arrow A B)

» conv does not interfere with the structure of the \-terms.

Cons:

» Lose Curry-Howard correspondence?

» Still need to explicitely give the equivalence derivations.

The All-calculus modulo rewriting

Idea: extend the conversion rule of the AlM-calculus with a rewrite
system R:

FrEM:A I+ B: Type A=3r B
r'-m:B

The All-calculus modulo rewriting

Idea: extend the conversion rule of the AlM-calculus with a rewrite
system R:

FrEM:A I+ B: Type A=3r B
r'-m:B

Add rewrite rules so that the translation preserves reduction.

The All-calculus modulo rewriting

Idea: extend the conversion rule of the AlM-calculus with a rewrite
system R:
Fr=M: A I+ B: Type A=gr B
r-M:B

Add rewrite rules so that the translation preserves reduction (in
addition to binding and typing).

Preserving reduction

Signature context X:

type : Type
arrow : type — type — type

term : type — Type
lam : (term A — term B) — term (arrow A B)
app : term(arrow AB) — term A — term B

Rewrite rules R:

app(lamF)N — FN

Preserving reduction
Signature context X:

type : Type
arrow : type — type — type

term : type — Type
lam : (term A — term B) — term (arrow A B)
app : term(arrowAB) — term A — term B

Rewrite rules R:

term (arrowAB) — term A — term B
lamF — F
appMN — MN

Preserving reduction

Signature context ¥:
type : Type
arrow : type — type — type
term : type — Type
Rewrite rules R:
term (arrowAB) — term A — term B
Translation:

M A M) = Ax:[A]. [M]
[MN] = [M][N]

Preserving reduction

Theorem
If M — M’ then [M] —* [M'].

Preserving reduction

Theorem
If M — M’ then [M] —* [M'].

Corollary
If M —* M’ then [M] —* [M'].

Preserving reduction

Theorem
If M — M’ then [M] —* [M'].

Corollary
If M —* M’ then [M] —* [M'].

Corollary
If M = M’ then [M] = [M'].

Completeness

Recovered typing preservation.

Theorem (Cousineau & Dowek 2007)
IFTF M: A then X, [T+ [M] : [A].
Works for any functional pure type system:
» System F
» Calculus of constructions

» Simple type theory

Completeness

Recovered typing preservation.

Theorem (Cousineau & Dowek 2007)
IFTF M: A then X, [T+ [M] : [A].
Works for any functional pure type system:
» System F
» Calculus of constructions

» Simple type theory

What about soundness?

On termination and soundness

Link between termination and soundness:

» I is strongly normalizing

On termination and soundness

Link between termination and soundness:

» I is strongly normalizing

» Adding axioms (X) does not influence termination

On termination and soundness

Link between termination and soundness:

» I is strongly normalizing

» Adding axioms (X) does not influence termination

» Can be used to show soundness:

» Consistency: there is no normal term of type [L]

On termination and soundness

Link between termination and soundness:

» I is strongly normalizing
» Adding axioms (X) does not influence termination
» Can be used to show soundness:

» Consistency: there is no normal term of type [L]

» Adequacy: if [T] F M : [A] and M is a normal form, then
M = [N] for some N such that T N : A

On termination and soundness

Link between termination and soundness:

» I is strongly normalizing
» Adding axioms (X) does not influence termination
» Can be used to show soundness:

» Consistency: there is no normal term of type [L]

» Adequacy: if [T] F M : [A] and M is a normal form, then
M = [N] for some N such that T N : A

» Conservativity: if [[]F M : [A] then M reduces to a normal
form [N] for some N such that TH N : A.

On termination and soundness

Adding rewrite rules (R) can break strong normalization:

» because — does not terminate

On termination and soundness

Adding rewrite rules (R) can break strong normalization:

» because — does not terminate

» or because —g U —3 does not terminate

On termination and soundness

Adding rewrite rules (R) can break strong normalization:

» because — does not terminate

» or because —g U —3 does not terminate

> or even because — 3 does not terminate for well-typed terms

On termination and soundness

Adding rewrite rules (R) can break strong normalization:

» because — does not terminate

» or because —g U —3 does not terminate

> or even because — 3 does not terminate for well-typed terms

Need to find other solutions.

Summary

v

AN embeddings do not preserve reduction.

v

Obstacle for embedding theories with dependent types.

v

Adding rewrite rules to Al helps recover completeness...

> ... but can break soundness.

Soundness in the All-calculus modulo rewriting

Approach 1: models

Idea: build a model for AT/ X
» in the algebra of reducibility candidates

» or in a general notion of [-algebra.

Approach 1: models

Idea: build a model for AT/ X
» in the algebra of reducibility candidates
» or in a general notion of [-algebra.

The model implies strong normalization of Al1/X. Use this to prove
soundness (consistency, adequacy, conservativity).

Approach 1: models

Idea: build a model for AT/ X
» in the algebra of reducibility candidates
» or in a general notion of [-algebra.

The model implies strong normalization of Al1/X. Use this to prove
soundness (consistency, adequacy, conservativity).

Theorem (Dowek 2014)
There is a model for A[1/STT and for AI/COC.

Approach 1: models

Idea: build a model for AT/ X
» in the algebra of reducibility candidates
» or in a general notion of [-algebra.

The model implies strong normalization of Al1/X. Use this to prove
soundness (consistency, adequacy, conservativity).

Theorem (Dowek 2014)
There is a model for A[1/STT and for AI/COC.

Problem: implies strong normalization in X, so at least as hard to
prove as strong normalization in X.

Approach 2: relative normalization

If [T]+ M : [A], what can we say about M?

Approach 2: relative normalization

If [T]+ M : [A], what can we say about M?

Example

If X is the simply-typed A-calculus, the polymorphic identity
function is not well-typed:

B:Typel (Aa:Type.Xx:a.x)B: 08—
It is well-typed in AI/X:

B :type F (A« : type. Ax : term . x) B : term 5 — term 3

Approach 2: relative normalization

If [T]+ M : [A], what can we say about M?

Example
If X is the simply-typed A-calculus, the polymorphic identity
function is not well-typed:

B:Typel (Aa:Type.Xx:a.x)B: 08—
It is well-typed in AI/X:

B :type F (A« : type. Ax : term . x) B : term 5 — term 3

But it reduces to Ax : term 5. x = [Ax : 5.x], a term that is
well-typed in X.

Approach 2: relative normalization

If [T]+ M : [A], what can we say about M?

Example

If X is the simply-typed A-calculus, the polymorphic identity
function is not well-typed:

B:Typel (Aa:Type.Xx:a.x)B: 08—
It is well-typed in AI/X:

B :type F (A« : type. Ax : term . x) B : term 5 — term 3

But it reduces to Ax : term 5. x = [Ax : 8. x], a term that is
well-typed in X.
Idea: reduce only what is necessary.

Erasure

Define an erasure from AlM1/X to X:

x|
|Ax : A. M|
IMN|

[type]|
|lterm A|
|IA— Bl

X
Ax ¢ [|A]]. M|
[MI[N]

Type
|Al
Al = 1B

Erasure is the inverse of the translation:

[M]|
ITATI

= M
= A

Proving soundness

What statement should we prove?
> If [T]= M:JA] in AlT/X then T+ |[M]|: Ain X7

Proving soundness

What statement should we prove?

B :type - (Aa : type. Ax : term . x) 3 : term 3 — term 3

Proving soundness

What statement should we prove?

B :type - (Aa : type. Ax : term . x) 3 : term 3 — term 3

» If [T]F M : [A] in AN/X then M —* M’ such that
e |M|:Ain X7?

Proving soundness

What statement should we prove?

B :type - (Aa : type. Ax : term . x) 3 : term 3 — term 3

> I:F I A4 4 'H)Il/x tlﬂEH A4 * A4I SIEIq that
[FMEM:Nx:A.[B] [FMEN:A
[FT=MN:[B]

Proving soundness

What statement should we prove?

» If [TJF M:Ain AN/X then M —* M’ and A —* A’ such
that T+ [M'] : ||A'|| in X7

Proving soundness

What statement should we prove?
> If I A4:4'H)Hlxtﬁsﬁ A4)*A4/ EHE’ 4 >l<q/SI EIq
that F A4l . 4/ 'H XZ
[rM,x:A+-M:B
[MEM:AM:Nx:AB

Proving soundness

What statement should we prove?
> If I A4:4'H)Hlxtﬁsﬁ A4)*A4l EHE’ 4 >l<q/SI EIq
that F A4l . 4/ 'H XZ
[rM,x:A+-M:B
[MEM:AM:Nx:AB

» fTEM:Ain AM/X then T —* ', M —* M’, and
A —* A’ such that ||| M| : ||A]| in X7

Proving soundness

What statement should we prove?
> If I A4:4'H)Hlxtﬁsﬁ A4)*A4l EHE’ 4 >l<q/SI EIq
that F A4l . 4/ 'H XZ
[rM,x:A+-M:B
[MEM:AM:Nx:AB

F Ao @ type. Ax : terma. x : [a : type. term 8 — term 8

Proving soundness

What have we learned?
1. AM/X can type more terms than X.

2. These terms can be used to construct proofs for the
translation of X types.

3. The AM/X terms that inhabit the translation of X types can
be reduced to the translation of X terms.

Proving soundness

What have we learned?
1. AM/X can type more terms than X.

2. These terms can be used to construct proofs for the
translation of X types.

3. The AM/X terms that inhabit the translation of X types can
be reduced to the translation of X terms.

Need higher-order reasonning.

Reducibility method

Let [’ be a context in X. Define the predicate ' E M : A by
induction on A:

Reducibility method

Let [’ be a context in X. Define the predicate ' E M : A by
induction on A:

» If A=type then ' = M : A when M —* M’ such that
k= |M|: Type.

Reducibility method

Let [’ be a context in X. Define the predicate ' E M : A by
induction on A:

» If A=type then ' = M : A when M —* M’ such that
k= |M|: Type.

> If A=term B then " E M : A when M —* M’ and
B —* B’ such that " - [M'| : |B/|.

Reducibility method

Let [’ be a context in X. Define the predicate ' E M : A by
induction on A:

» If A=type then ' = M : A when M —* M’ such that
e M| : Type.

> If A=term B then " E M : A when M —* M’ and
B —* B’ such that " - [M'| : |B/|.

» If A=Tlx: B.C then ' E M : A when for for all N such that
[MEN:B, I"EMN: {N/x}C.

Reducibility method

Let [’ be a context in X. Define the predicate ' E M : A by
induction on A:

» If A=type then ' = M : A when M —* M’ such that
e M| : Type.

> If A=term B then " E M : A when M —* M’ and
B —* B’ such that " - [M'| : |B/|.

» If A=Tlx: B.C then ' E M : A when for for all N such that
[MEN:B, I"EMN: {N/x}C.

If o is a substitution mapping variables to terms:
» "Eo:Twhenl"EFo(x):0(A)forall (x:A)erl

Soundness

Theorem (Assaf 2013)
IfT' = M :Ain A/X then for any X context [" and substitution o
such thatT'E o : T, "E o(M) : o(A).

Proof.
By induction on the derivation of [= M : A. O

Soundness

Theorem (Assaf 2013)
IfT' = M :Ain A/X then for any X context [" and substitution o
such thatT'E o : T, "E o(M) : o(A).

Proof.
By induction on the derivation of [= M : A. O

Corollary (Conservativity)
If[F] = M: [A] then M —* M’ such that T - |[M’| : A.

Proof.
By taking the identity substitution, ||o([A])]l = ||[[A]]] = A. O

Relative normalization

» Avoid complex techniques such as reducibility candidates.
» Works for non-terminating theories!

» For pure type systems, Al1/X corresponds to a conservative
completion of X.

Summary

» Strong normalization = all terms in A\[1/X are strongly
normalizing

» Proved using termination models

» Relative normalization = terms in Al1/X can be reduced to
terms in X.

» Proved by using reducibility on a more general statement

» Both approaches show conservativity of A\I1/X

Embedding pure type systems

Pure type systems

Specification S = (S, A, R)
» S a set of sorts
» A C S xS aset of axioms

> RCS xS xS aset of rules
Syntax

sorts s e S
terms M,N,AB = x|s|NMx:AB|Xx:AM|MN
contexts [

| Mx: A

Typing rules

(x:A)erl (s1,:) € A
NkEx:A MFs1:%
Nl-A:s Nx:AFB:s (s1,52,83) €ER
N=TNx:A.B:s3

NETx:A.B:s Nx:AFM:B
FIEAx:AM:Tix: A B

Fr=M:Tx:AB Fr=N:A
r-MN:{N/x}B

r-M:A -B:s A=B
r-m™m:B

Example

Example
The calculus of constructions (COC) is the PTS defined by the
signature:

S = Type,Kind

A = (Type, Kind)

R = (Type, Type, Type), (Kind, Type, Type),
(Type, Kind, Kind), (Kind, Kind, Kind)

The polymorphic identity function id = (A« : Type. Ax : a. x) is
well-typed in COC:

Fid: (Ma : Type.a — «)

Example

Example

Simple type theory is (STT) is the PTS defined by the signature:

S
A
R

Prop, Type, Kind
(Prop, Type) (Type, Kind)
(Prop, Prop, Prop), (Type, Prop, Prop), (Type, Type, Type)

Translations

» All-calculus: types may only depend on terms

» PTS: terms and types may depend on types
(polymorphism, type operators)

Translations

» All-calculus: types may only depend on terms
» PTS: terms and types may depend on types
(polymorphism, type operators)
Tarski style universes (Palmgren 1988): two representations
> [A] as a term

> [A] as a type

Two Translations

As a type:
» [s] = Us, the symbol for the universe of types s
» [Mx: A B] =Nx: [A].[B]

Two Translations

As a type:
» [s] = Us, the symbol for the universe of types s
» [Mx: A B] =Nx: [A].[B]
As a term:
> [s] = us, a constant
» [Mx: A.B] = n[A]l(\x : [A].[B])

Decoding function

» Decoding function T

[A] = TIA

Decoding function

» Decoding function T

[A]l = TI[A]
» Constraints:

[s] = Us
[Mx:A.B] = nNx:[A].[B]

Decoding function

» Decoding function T

[A]l = TI[A]
» Constraints:

T [s] = Us
T(Nx:A.B)] = Nx:TATB

Decoding function

» Decoding function T

[A]l = TI[A]
» Constraints:

T us — Us
T(rAB) — MNx:TAT(Bx)

The embedding

Constants
Us . Type Vs €S
Ts . Us — Type VsesS
Us o U, V(s1,5) € A

Tsisa,ss - Ha i Ug . (Ts a0 = Ug,) = Ugy V(s1,52,53) € R
Rewrite rules

Ts, &1 — s V(s1,52) € A
Ts3 (7T51’52’53 Ocﬁ) — [lx: T51 a.T52 (B X) V(51,52,53) ER

The embedding

[x]

[s]

[Mx : A.B]
[Ax : A. M]
[MN]

[s]
[Mx: A B]

[A]

Tsy,52,55 [A] [B]
Ax : [A]. [M]
[M] [NV]

Us
Mx : [A].[B]
T [Al

Infinite universe hierarchy

In MLTT, Coq, Agda:

U02U1:U22...

Infinite universe hierarchy

In MLTT, Coq, Agda:

U02U1:U22...

In AM-calculus modulo:

Type
U, — Type

Uit

Mo : U,‘. ((T,‘Oé — U,)) — U,‘

Vie N
VieN
VieN
VieN

Infinite universe hierarchy

In MLTT, Coq, Agda:
U02U1:U22...

In AM-calculus modulo:

(@

: nat — Type

T : Tli:nat.Ui — Type

u : Miznat.U(i+1)

m ¢ Mitnat.Na: Ui ((Tia—=Ui))—= Ui

Cumulativity

In MLTT, Coq:
N-=A:U;

[FA: Ui

Cumulativity

In MLTT, Coq:
N-=A:U;

[FA: Ui

In AM-calculus modulo:
T o Ui—= Ui

T (1A — T;A

Cumulativity

In MLTT, Coq:
N-=A:U;

[FA: Ui

In AM-calculus modulo:
T o Ui—= Ui

T (1A — T;A

Warning: need to reflect equality for completeness

Summary

In AlM-calculus modulo, can embed:
» functional pure type systems
» infinite type hierarchies
» cumulativity

and much morel

Introduction

The framework

Embeddings in Al

Embeddings in All-calculus modulo rewriting
Soundness in the Al-calculus modulo rewriting
Embedding pure type systems

Conclusion

Conclusion

» Universal proof framework based on AlN-calculus modulo

» Sound and complete embeddings that preserve the reduction
semantics

» Automated translation and verification

Cogine: Coq proofs in Dedukti

Holide: HOL Light proofs in Dedukti
Zenonide: Zenon traces in Dedukti
Focalide: Focalize specifications in Dedukti

vV vy VvVyy

Future work

» Universal proof framework?

» Classical logic without double negation?
» Linear logic?
» Intersection types?

Tack!

Bibliography

(=)

) B & &

Denis Cousineau and Gilles Dowek, Embedding pure type
systems in the lambda-Pi calculus modulo, TLCA 2007.

Mathieu Boespflug, Quentin Carbonneaux and Olivier
Hermant, The lambda-Pi calculus modulo as a universal proof
language, PXTP 2012.

Ronan Saillard, Towards explicit rewrite rules in the lambda-Pi
calculus modulo, IWIL 2013.

Ali Assaf, Conservativity of embeddings in the lambda-Pi
calculus modulo, draft.

Ali Assaf, A calculus of constructions with explicit subtyping,

draft.

Gilles Dowek, Models and termination of proof-reduction in the
lambda-Pi calculus modulo theory, draft.

	Introduction
	The framework
	Embeddings in
	Embeddings in -calculus modulo rewriting
	Soundness in the -calculus modulo rewriting
	Embedding pure type systems
	Conclusion

