Embedding logics in Dedukti 2014 edition

Ali Assaf

2nd KWARC-Deducteam workshop May 26, 2014

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Outline

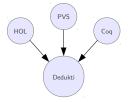
1 Introduction

2 Pure type systems

3 HOL

5 Focalize

Universal proof checker



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Source: HOL, Coq, ...

- Rich type systems
- Reconstruction, proof search, ...

Target: Dedukti

- λΠ-calculus modulo
- Proof checking (no reconstruction, no proof search, ...)

Outline

1 Introduction

2 Pure type systems

3 HOL

5 Focalize

A general class of type systems for the λ-calculus
 λΠ-calculus, System F, Calculus of constructions, ...
 Basis for several proof systems
 HOL, Coq, ...

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Pure type systems in the $\lambda\Pi$ -calculus modulo

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- Translation of *functional* PTS
- Correctness

Pure type systems in the $\lambda\Pi\text{-calculus}$ modulo

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Translation of *functional* PTS
- Correctness

What's new?

- Conservativity
- Normalization

• As a type:

$$\llbracket s \rrbracket = s$$

$$\llbracket \Pi x : A.B \rrbracket = \Pi x : \llbracket A \rrbracket . \llbracket B \rrbracket$$

As a *term*:

$$[s] = \dot{s}$$

$$[\Pi x : A.B] = \dot{\pi} [A] (\lambda x : [A]] . [B])$$

◆□ > < 個 > < E > < E > E 9 < 0</p>

- [A] is a code for [[A]]
- \blacksquare Decoding function ε

$$\varepsilon$$
 ([A]) \equiv $[A]$

• With rewrite rules:

$$\begin{array}{ccc} \varepsilon\left(\dot{s}\right) & \longrightarrow & s \\ \varepsilon\left(\dot{\pi} A B\right) & \longrightarrow & \Pi x : \varepsilon\left(A\right) . \varepsilon\left(B x\right) \end{array}$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Polymorphic identity in CC

$$\lambda A$$
 : type. λx : $A.x$: ΠA : type. $A \rightarrow A$

Translation

 $[\lambda A : type.\lambda x : A.x] : [\Pi A : type.A \rightarrow A]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Polymorphic identity in CC

$$\lambda A$$
 : type. λx : $A.x$: ΠA : type. $A \rightarrow A$

Translation

 λA : type. λx : ε (A).x : ΠA : type. ε (A) $\rightarrow \varepsilon$ (A)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

■ Suppose *M* is well typed in the PTS

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

■ Is [M] well typed in $\lambda \Pi \simeq$?

Suppose *M* is well typed in the PTS

■ Is [M] well typed in $\lambda \Pi \simeq$?

Theorem (Cousineau & Dowek 2007)

If $\Gamma \vdash_{PTS} M : A$ then $\llbracket \Gamma \rrbracket \vdash_{\lambda \Pi \simeq} [M] : \llbracket A \rrbracket$.

Proof.

By induction on the derivation of $\Gamma \vdash_{PTS} M : A$.

ション ふゆ アメリア メリア しょうくしゃ

Conservativity

• Suppose $\llbracket A \rrbracket$ is provable in $\lambda \Pi \simeq$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Is A provable in the PTS?

Conservativity

- Suppose $\llbracket A \rrbracket$ is provable in $\lambda \Pi \simeq$
- Is A provable in the PTS?

Suppose
$$\llbracket \Gamma \rrbracket \vdash_{\lambda \Pi \simeq} M : \llbracket A \rrbracket$$

• Define an erasure |M| such that |[M]| = M

$$\begin{aligned} |\dot{s}| &= s\\ |\dot{\pi} A B| &= \Pi x : |A| . |B x|\\ \|\varepsilon (A)\| &= |A| \end{aligned}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Does $\Gamma \vdash_{PTS} |M| : A$ hold?

$\vdash_{\lambda\Pi\simeq}$	$(\lambda A : type.\lambda x : \varepsilon(A).x)$ bool	:	$\varepsilon (bool) o \varepsilon (bool)$
∀stlc	$(\lambda A: type.\lambda x:A.x)$ bool	:	$bool \to bool$

 $\begin{array}{ll} \vdash_{\lambda\Pi\simeq} & (\lambda A: \mathsf{type.}\lambda x: \varepsilon \ (A).x) \, \mathsf{bool} & : & \varepsilon \ (\mathsf{bool}) \to \varepsilon \ (\mathsf{bool}) \\ \forall_{\mathit{STLC}} & (\lambda A: \mathsf{type.}\lambda x: A.x) \, \mathsf{bool} & : & \mathsf{bool} \to \mathsf{bool} \end{array}$

• The term $(\lambda A : type.\lambda x : A.x)$ bool is not well typed in the PTS

ション ふゆ アメリア メリア しょうくしゃ

It uses "illegal" abstractions (here polymorphism)

But it reduces to λx : bool.x which is well-typed!

 $\begin{array}{ll} \vdash_{\lambda\Pi\simeq} & (\lambda A: \mathsf{type.}\lambda x: \varepsilon \ (A).x) \, \mathsf{bool} & : & \varepsilon \ (\mathsf{bool}) \to \varepsilon \ (\mathsf{bool}) \\ \forall_{STLC} & (\lambda A: \mathsf{type.}\lambda x: A.x) \, \mathsf{bool} & : & \mathsf{bool} \to \mathsf{bool} \end{array}$

The term $(\lambda A : type.\lambda x : A.x)$ bool is not well typed in the PTS

ション ふゆ く 山 マ チャット しょうくしゃ

It uses "illegal" abstractions (here polymorphism)

- But it reduces to λx : bool.x which is well-typed!
- Key insight: this is always the case!

Theorem (Assaf 2013)

If $\llbracket \Gamma \rrbracket \vdash_{\lambda \Pi \simeq} M : \llbracket A \rrbracket$ then $\Gamma \vdash_{PTS} M' : A$.

Proof.

- **1** Define an erasure |M| such that |[M]| = M.
- **2** Prove using induction that $\Gamma \vdash_{PTS^*} |M| : A$.
- 3 Prove using reducibility that $|M| \longrightarrow^* M'$ such that $\Gamma \vdash_{PTS} M' : A$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Normalization

Theorem (Cousineau & Dowek 2007)

If $\lambda \Pi \simeq$ is SN, then PTS is SN.

Proof.

Translation [M] preserves β -reduction.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Cousineau & Dowek 2007)

If $\lambda \Pi \simeq$ is SN, then PTS is SN.

Proof.

Translation [M] preserves β -reduction.

Theorem (Dowek 2014)

For some PTS in SN, $\lambda \Pi \simeq$ is SN.

Proof.

Using reducibility candidates to define a super-consistency criterion for $\lambda \Pi \simeq$.

ション ふゆ アメリア メリア しょうくしゃ

Outline

1 Introduction

2 Pure type systems

3 HOL

5 Focalize

6 Conclusion

- A family of theorem provers
 - HOL Light, HOL4, ProofPower, ...
- Based on higher order logic
- Large formalizations
 - Flyspeck project (Kepler's conjecture)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Holide

Holide: HOL in Dedukti

- Developed by Ali Assaf
- Avalailable at: https://gforge.inria.fr/projects/holide/

ション ふゆ く 山 マ チャット しょうくしゃ

Last time:

- Proof retrieval
- Proof sharing
- Standard library benchmark

What's new?

- Term sharing
- Improved benchmark results
- Multiple target languages

LCF architecture = no proof trace

OpenTheory project [Hurd 2011]

A standard for exporting and exchanging HOL proofs

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

A well-defined standard library

The OpenTheory article format

Instructions that are executed to reconstruct the theorems.

Example

Reflexivity on a variable x of type A:

$$\overline{x^A = x^A}$$
 ref

OpenTheory article file OCaml execution
"A" let A = varType("A") in
varType let x = varTerm(var("x", A)) in
"x" refl x
var
var

(ロ) (型) (E) (E) (E) (O)

refl

LCF architecture = huge proof trees

Example

A proof of t + t = u + u:

let p = ... (* A very large proof of t = u *) in
appThm (appThm (refl f) p p)

$$\frac{\frac{\pi}{(+)=(+)} \operatorname{refl}}{(+) t=(+) u} \operatorname{appThm} \frac{\pi}{t=u} \\ \frac{\pi}{(+) t=(+) u} \operatorname{appThm} \frac{\pi}{t=u} \\ (+) t t=(+) u u$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Need proof sharing!

Proof sharing

Share common subproofs

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Need lambda lifting

Term sharing

No implicit arguments in Dedukti

- Terms are annotated by their types
- Proofs are annotated by their terms and types

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example

step1 : proof
$$(f x = g y) := appThm p q$$
.

Term sharing

No implicit arguments in Dedukti

- Terms are annotated by their types
- Proofs are annotated by their terms and types

Example

step1 : proof
$$(f \times (= a b) g \times) := appThm a b f g \times y p q$$
.

ション ふゆ アメリア メリア しょうくしゃ

- Size is at least $O(n^2)$!
- Need term sharing

- Lambda-lift terms and types to top-level definitions
- During translation, keep *both* the name and the body
 - Need name for referencing
 - Need body for analysis

In appThm p q, we need to know that the statement of p is f = g.

ション ふゆ アメリア メリア しょうくしゃ

Memoization

Results

Package	Size (in kB)		Verification	Percentage
	OpenTheory	Dedukti	time (in s)	verified
unit	26	309	0	100%
function	89	1,301	3	100%
pair	195	4,943	15	100%
bool	305	4,258	7	100%
sum	502	20,988	99	100%
option	520	23,815	77	100%
relation	971	42,572	350	100%
list	1,377	68,031	182	100%
real	1,754	68,508	1	1%
natural	1,952	130,111	496	100%
set	2,329	90,819	431	100%
Total	10,020	455,656	1,661	85%

(ロ)、(型)、(E)、(E)、 E) のQで

Results

Package	Size (in kB)		Verification	Percentage
	OpenTheory	Dedukti	time (in s)	verified
unit	26	116	0.04	100%
function	89	595	0.2	100%
pair	195	1,469	0.73	100%
bool	305	1,824	0.53	100%
sum	502	3,754	1.23	100%
option	520	4,027	1.29	100%
relation	971	8,113	2.99	100%
list	1,377	10,128	3.39	100%
real	1,754	116,758	3.31	100%
natural	1,952	12,542	3.48	100%
set	2,329	18,055	6.17	100%
Total	10,020	72,303	23.36	100%

(ロ)、(型)、(E)、(E)、 E) のQで

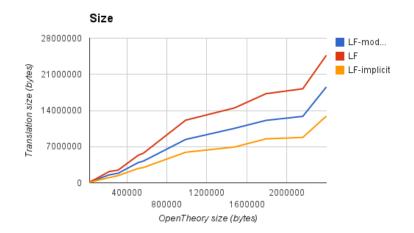
Target languages

- LF modulo embedding
 - Dedukti
 - Coq?
- LF embedding
 - Dedukti
 - Twelf
 - Coq
- LF embedding with implicit arguments

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

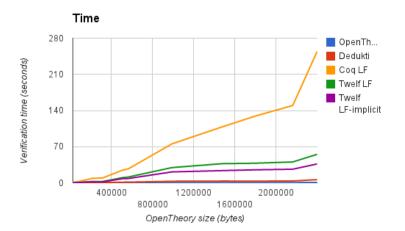
- Twelf
- Coq?

Target languages



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Target languages



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Future work

Use smarter sharing

- Avoid unnecessary lambda lifting
- Use caching methods (Kaliszyk & Krauss 2013)

- Translate larger formalizations
 - Flyspeck? (Kaliszyk & Krauss 2013)

Outline

1 Introduction

2 Pure type systems

3 HOL

5 Focalize

Proof system based on the calculus of inductive constructions

- Infinite hierarchy of universes type,
- Subtyping type_i \subseteq type_{i+1}
- Floating universes
- Inductive types
- Co-inductive types
- Modules
- **...**
- Large formalizations
 - 4 color theorem, Feit-Thompson theorem, ...

Coqine

Coqine: Coq in Dedukti

- Developped by Ali Assaf and Guillaume Burel
- Available at: https://gforge.inria.fr/projects/coqine/

ション ふゆ く 山 マ チャット しょうくしゃ

Last time:

- Proof retrieval
- Universe hierarchy
- Inductive types
- Modules

What's new?

- Plugin architecture
- Universe subtyping

New architecture

A Coq plugin that is loaded at runtime

Example Require Coqine Logic Arith. Dedukti Export Library Logic Arith.

- Pros
 - Directly access the contents of .vo files
 - No need to reimplement features
- Cons
 - Still rely on the Coq implementation

Infinite hierarchy

 $\mathsf{Prop},\mathsf{Type}_0:\mathsf{Type}_1:\mathsf{Type}_2:\ldots$

Cumulative

 $\mathsf{Prop} \subseteq \mathsf{Type}_0 \subseteq \mathsf{Type}_1 \subseteq \mathsf{Type}_2: \ldots$

 $\frac{\Gamma \vdash A : \mathsf{Type}_i}{\Gamma \vdash A : \mathsf{Type}_{i+1}}$

Universe subtyping in Dedukti

Type uniqueness

 $ty\dot{p}e_i$: $Type_{i+1}$

Explicit coercions

$$\uparrow_i$$
: Type_i \rightarrow Type_{i+1}

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Different typing derivations yield different terms

$$\frac{\underline{A: \mathsf{Type}_0} \qquad x: A \vdash B: \mathsf{Type}_0}{\frac{\Pi x: A.B: \mathsf{Type}_0}{\Pi x: A.B: \mathsf{Type}_1}} \qquad \uparrow_0 \dot{\pi}_0 a b$$

$$\frac{A: \mathsf{Type}_{0}}{A: \mathsf{Type}_{1}} \quad \frac{x: A \vdash B: \mathsf{Type}_{0}}{x: A \vdash B: \mathsf{Type}_{1}} \quad \dot{\pi}_{1} (\uparrow_{0} a) (\uparrow_{0} b)$$
$$\frac{\pi_{1} (\uparrow_{0} a) (\uparrow_{0} b)}{\pi_{1} (\uparrow_{0} b)}$$

In the context

 $\begin{array}{rcl} a,b & : & \mathsf{Type}_0 \\ p,q & : & \mathsf{Type}_1 \to \mathsf{Type}_1 \\ f & : & \mathsf{\Pi} a,b : \mathsf{Type}_1. \ p \ (\mathsf{\Pi} x : a.b) \\ g & : & \mathsf{\Pi} c : \mathsf{Type}_0. \ p \ c \to q \ c \end{array}$

we have

$$g(\Pi x:a.b)(fab): q(\Pi x:a.b)$$

In the context

$$\begin{array}{rccc} a,b & : & \mathsf{Type}_0 \\ p,q & : & \mathsf{Type}_1 \to \mathsf{Type}_1 \\ f & : & \mathsf{\Pi} a,b : \mathsf{Type}_1 \cdot \varepsilon_1 \left(p\left(\dot{\pi}_1 \, a \, b\right) \right) \\ g & : & \mathsf{\Pi} c : \mathsf{Type}_0 \cdot \varepsilon_1 \left(p\left(\uparrow_0 c\right) \to q\left(\uparrow_0 c\right) \right) \end{array}$$
we have

$$g(\dot{\pi}_0 a b)(f(\uparrow_0 a)(\uparrow_0 b)) : \varepsilon_1(q(\uparrow_0 (\dot{\pi}_0 a b)))$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

In the context

$$\begin{array}{rccc} a,b & : & \mathsf{Type}_0 \\ p,q & : & \mathsf{Type}_1 \to \mathsf{Type}_1 \\ f & : & \mathsf{\Pi}a,b:\mathsf{Type}_1.\,\varepsilon_1\,(p\,(\dot{\pi}_1\,a\,b)) \\ g & : & \mathsf{\Pi}c:\mathsf{Type}_0.\,\varepsilon_1\,(p\,(\uparrow_0\,c)\to q\,(\uparrow_0\,c)) \end{array}$$
we have

$$g(\dot{\pi}_0 a b)(f(\uparrow_0 a)(\uparrow_0 b)) \neq \varepsilon_1(q(\uparrow_0 (\dot{\pi}_0 a b))) \times f(\uparrow_0 a)(\uparrow_0 b) : \varepsilon_1(P(\dot{\pi}_1 (\uparrow_0 a)(\uparrow_0 b)))$$

Solution: Reflecting equalities

Add equation

$$\uparrow_i (\dot{\pi}_i a b) \equiv \dot{\pi}_{i+1} (\uparrow_i a) (\uparrow_i b)$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Solution: Reflecting equalities

Add equation

$$\uparrow_i (\dot{\pi}_i a b) \equiv \dot{\pi}_{i+1} (\uparrow_i a) (\uparrow_i b)$$

How does this help?

 $\begin{array}{rcl} a,b & : & \mathsf{Type}_0 \\ p,q & : & \mathsf{Type}_1 \to \mathsf{Type}_1 \\ f & : & \mathsf{\Pi} a,b:\mathsf{Type}_1.\,\varepsilon_1\,(P\,(\dot{\pi}_1\,a\,b)) \\ g & : & \mathsf{\Pi} c:\mathsf{Type}_0.\,\varepsilon_1\,(P\,(\uparrow_0\,c)\to q\,(\uparrow_0\,c)) \end{array}$

$$\begin{array}{rcl}g\left(\dot{\pi}_{0}\:a\:b\right)\left(f\left(\uparrow_{0}\:a\right)\left(\uparrow_{0}\:b\right)\right)&:&\varepsilon_{1}\left(q\left(\uparrow_{0}\left(\dot{\pi}_{0}\:a\:b\right)\right)\right)\\ &&f\left(\uparrow_{0}\:a\right)\left(\uparrow_{0}\:b\right)&:&\varepsilon_{1}\left(P\left(\dot{\pi}_{1}\left(\uparrow_{0}\:a\right)\left(\uparrow_{0}\:b\right)\right)\right)\end{array}$$

Solution: Reflecting equalities

Add equation

$$\uparrow_i (\dot{\pi}_i a b) \equiv \dot{\pi}_{i+1} (\uparrow_i a) (\uparrow_i b)$$

How does this help?

 $\begin{array}{rcl} a,b & : & \mathsf{Type}_0 \\ p,q & : & \mathsf{Type}_1 \to \mathsf{Type}_1 \\ f & : & \mathsf{\Pi} a,b : \mathsf{Type}_1 \cdot \varepsilon_1 \left(P\left(\dot{\pi}_1 \, a \, b\right) \right) \\ g & : & \mathsf{\Pi} c : \mathsf{Type}_0 \cdot \varepsilon_1 \left(P\left(\uparrow_0 c\right) \to q\left(\uparrow_0 c\right) \right) \end{array}$

$$\begin{array}{rcl}g\left(\dot{\pi}_{0}\,a\,b\right)\left(f\left(\uparrow_{0}\,a\right)\left(\uparrow_{0}\,b\right)\right) & : & \varepsilon_{1}\left(q\left(\uparrow_{0}\left(\dot{\pi}_{0}\,a\,b\right)\right)\right) & \checkmark \\ & f\left(\uparrow_{0}\,a\right)\left(\uparrow_{0}\,b\right) & : & \varepsilon_{1}\left(P\left(\uparrow_{0}\left(\dot{\pi}_{0}\,a\,b\right)\right)\right)\end{array}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• Exercise: Do the same for Prop.

With rewrite rules

The main challenge is turning the equations into rewrite rules
Distributing *i* breaks confluence

$$\begin{array}{ccc} \uparrow_i(\dot{\pi}_i A B) & \longrightarrow & \dot{\pi}_{i+1}(\uparrow_i A)(\uparrow_i B) \\ \forall_{i+1} x : (\uparrow_i A) . B & \longrightarrow & \forall_i x : A . B \end{array}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

With rewrite rules

The main challenge is turning the equations into rewrite rules
Distributing *i* breaks confluence

$$\begin{array}{rcl} \uparrow_{i}\left(\dot{\pi}_{i}\,A\,B\right) &\longrightarrow & \dot{\pi}_{i+1}\left(\uparrow_{i}\,A\right)\left(\uparrow_{i}\,B\right) \\ \forall_{i+1}x:\left(\uparrow_{i}\,A\right).B &\longrightarrow & \forall_{i}x:A.B \end{array}$$

• Need to raise \uparrow_i to the top

$$\begin{array}{cccc} \uparrow_{i}(\dot{\pi}_{i} A B) & \longleftarrow & \dot{\pi}_{i+1}(\uparrow_{i} A)(\uparrow_{i} B) \\ \forall_{i}x : A.B & \longleftarrow & \forall_{i+1}x : (\uparrow_{i} A).B \\ \uparrow^{(i)}_{\mathsf{Prop}}(\forall_{i}x : A.B) & \longleftarrow & \dot{\pi}_{i} A\left(\uparrow^{(i)}_{\mathsf{Prop}} B\right) \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Corresponds to minimal typing!

Terms *must* have a unique representation

Theorem (Canonicity)

If $M \equiv M'$ then $[M] \equiv [M']$.

Essential for correctness

Theorem (Correctness)

If $\Gamma \vdash_{Coq} M : A$ then $\llbracket \Gamma \rrbracket \vdash_{\lambda \Pi \simeq} [M] : \llbracket A \rrbracket$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Future work

- Universe polymorphism
- Better translation
 - of inductive typesof modules
- Translate the standard library

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Outline

1 Introduction

2 Pure type systems

3 HOL

4 Coq

5 Focalize

6 Conclusion

- An environment to develop certified programs
 - A functional programming language with object-oriented features

- Different from usual setting
 - Objects and inheritance
 - Non-termination
- http://focalize.inria.fr/

Focalize

```
class OrderingNat = {
  rep = nat;
  methods :
    abstract leg : rep -> rep -> bool;
    geq : rep \rightarrow rep \rightarrow bool;
    geq this n = \log n this;
    It : rep \rightarrow rep \rightarrow bool;
    It this n = (leq this n) \&\& ~~(geq this n);
    gt : rep \rightarrow rep \rightarrow bool;
    gt this n = |t n| this;
    abstract leg refl : forall n : rep, leg n n;
    abstract leq asym : forall n, m : rep, ...;
    abstract leq trans : forall n, m, p : rep, ...;
}
```

Built with interoperability in mind

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- Proof backends:
 - ZenonCoq

Built with interoperability in mind

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- Proof backends:
 - Zenon
 - Coq
 - Dedukti

Focalide: Focalize in Dedukti

- Developed by Raphaël Cauderlier
- Available in branch focalide of Focalize: http://focalize.inria.fr/download/

Current features:

- Objects
- Inheritence
- Specifications

Work in progress:

Proofs

Results

File	Size (kb)		Factor	Typing
	Original	Translation		
basics	23	4.3	0.19	OK
sets	6.3	56	8.9	OK
products	14	250	18	KO
lattices	22	333	15	OK
orders	7.6	625	83	OK
strict_orders	7.1	120	17	OK
orders_and_lattices	19	740	39	OK
wellfounded	4.5	176	40	KO
sums	20	589	30	KO
quotients	8.4	214	25	OK
fix	24	KO	KO	KO
Total	132	3107	24	71%

Outline

1 Introduction

2 Pure type systems

3 HOL

4 Coq

5 Focalize

◆□> <圖> < E> < E> E のQ@

Conclusion

- Theoretical and practical challenges
- Solving these challenges leads to better specifications
- One step closer towards interoperability

Other/future work:

- Proof assistants: PVS, Agda
- Theorem provers: Zenon (modulo), iProver (modulo)

ション ふゆ く 山 マ チャット しょうくしゃ