
Embedding logics in Dedukti
2014 edition

Ali Assaf

2nd KWARC-Deducteam workshop
May 26, 2014

Outline

1 Introduction

2 Pure type systems

3 HOL

4 Coq

5 Focalize

6 Conclusion

Universal proof checker

Source: HOL, Coq, ...
Rich type systems
Reconstruction, proof search, ...

HOL Coq

Dedukti

PVS

Target: Dedukti
λΠ-calculus modulo
Proof checking (no reconstruction, no proof search, ...)

Outline

1 Introduction

2 Pure type systems

3 HOL

4 Coq

5 Focalize

6 Conclusion

Pure type systems

A general class of type systems for the λ-calculus

λΠ-calculus, System F , Calculus of constructions, ...

Basis for several proof systems

HOL, Coq, ...

Pure type systems

Pure type systems in the λΠ-calculus modulo
Translation of functional PTS
Correctness

What’s new?
Conservativity
Normalization

Pure type systems

Pure type systems in the λΠ-calculus modulo
Translation of functional PTS
Correctness

What’s new?
Conservativity
Normalization

Translation

As a type:

JsK = s
JΠx : A.BK = Πx : JAK . JBK

As a term:

[s] = ṡ
[Πx : A.B] = π̇ [A] (λx : JAK . [B])

Decoding function

[A] is a code for JAK
Decoding function ε

ε ([A]) ≡ JAK

With rewrite rules:

ε (ṡ) −→ s
ε (π̇ A B) −→ Πx : ε (A). ε (B x)

Example

Example

Polymorphic identity in CC

λA : type.λx : A.x : ΠA : type.A→ A

Translation

[λA : type.λx : A.x] : JΠA : type.A→ AK

Example

Example

Polymorphic identity in CC

λA : type.λx : A.x : ΠA : type.A→ A

Translation

λA : type.λx : ε (A).x : ΠA : type. ε (A)→ ε (A)

Correctness

Suppose M is well typed in the PTS
Is [M] well typed in λΠ '?

Theorem (Cousineau & Dowek 2007)

If Γ `PTS M : A then JΓK `λΠ' [M] : JAK.

Proof.

By induction on the derivation of Γ `PTS M : A.

Correctness

Suppose M is well typed in the PTS
Is [M] well typed in λΠ '?

Theorem (Cousineau & Dowek 2007)

If Γ `PTS M : A then JΓK `λΠ' [M] : JAK.

Proof.

By induction on the derivation of Γ `PTS M : A.

Conservativity

Suppose JAK is provable in λΠ '
Is A provable in the PTS?

Suppose JΓK `λΠ' M : JAK
Define an erasure |M| such that |[M]| = M

|ṡ| = s
|π̇ A B| = Πx : |A| . |B x |
‖ε (A)‖ = |A|

Does Γ `PTS |M| : A hold?

Conservativity

Suppose JAK is provable in λΠ '
Is A provable in the PTS?

Suppose JΓK `λΠ' M : JAK
Define an erasure |M| such that |[M]| = M

|ṡ| = s
|π̇ A B| = Πx : |A| . |B x |
‖ε (A)‖ = |A|

Does Γ `PTS |M| : A hold?

Conservativity

Example
`λΠ' (λA : type.λx : ε (A).x) bool : ε (bool)→ ε (bool)
6`STLC (λA : type.λx : A.x) bool : bool→ bool

The term (λA : type.λx : A.x) bool is not well typed in the
PTS

It uses “illegal” abstractions (here polymorphism)

But it reduces to λx : bool.x which is well-typed!

Key insight: this is always the case!

Conservativity

Example
`λΠ' (λA : type.λx : ε (A).x) bool : ε (bool)→ ε (bool)
6`STLC (λA : type.λx : A.x) bool : bool→ bool

The term (λA : type.λx : A.x) bool is not well typed in the
PTS

It uses “illegal” abstractions (here polymorphism)

But it reduces to λx : bool.x which is well-typed!

Key insight: this is always the case!

Conservativity

Example
`λΠ' (λA : type.λx : ε (A).x) bool : ε (bool)→ ε (bool)
6`STLC (λA : type.λx : A.x) bool : bool→ bool

The term (λA : type.λx : A.x) bool is not well typed in the
PTS

It uses “illegal” abstractions (here polymorphism)

But it reduces to λx : bool.x which is well-typed!

Key insight: this is always the case!

Conservativity

Theorem (Assaf 2013)

If JΓK `λΠ' M : JAK then Γ `PTS M ′ : A.

Proof.

1 Define an erasure |M| such that |[M]| = M.
2 Prove using induction that Γ `PTS∗ |M| : A.
3 Prove using reducibility that |M| −→∗ M ′ such that

Γ `PTS M ′ : A.

Normalization

Theorem (Cousineau & Dowek 2007)

If λΠ ' is SN, then PTS is SN.

Proof.

Translation [M] preserves β-reduction.

Theorem (Dowek 2014)

For some PTS in SN, λΠ ' is SN.

Proof.

Using reducibility candidates to define a super-consistency criterion
for λΠ '.

Normalization

Theorem (Cousineau & Dowek 2007)

If λΠ ' is SN, then PTS is SN.

Proof.

Translation [M] preserves β-reduction.

Theorem (Dowek 2014)

For some PTS in SN, λΠ ' is SN.

Proof.

Using reducibility candidates to define a super-consistency criterion
for λΠ '.

Outline

1 Introduction

2 Pure type systems

3 HOL

4 Coq

5 Focalize

6 Conclusion

HOL

A family of theorem provers

HOL Light, HOL4, ProofPower, ...

Based on higher order logic
Large formalizations

Flyspeck project (Kepler’s conjecture)

Holide

Holide: HOL in Dedukti
Developed by Ali Assaf
Avalailable at: https://gforge.inria.fr/projects/holide/

Last time:
Proof retrieval
Proof sharing
Standard library benchmark

What’s new?
Term sharing
Improved benchmark results
Multiple target languages

https://gforge.inria.fr/projects/holide/

Proof retrieval

LCF architecture = no proof trace

OpenTheory project [Hurd 2011]
A standard for exporting and exchanging HOL proofs
A well-defined standard library

The OpenTheory article format

Instructions that are executed to reconstruct the theorems.

Example

Reflexivity on a variable x of type A:

` xA = xA refl

OpenTheory article file

"A"
varType
"x"
var
varTerm
refl

OCaml execution

let A = varType("A") in
let x = varTerm(var("x", A)) in
refl x

Proof size

LCF architecture = huge proof trees

Example

A proof of t + t = u + u:

let p = ... (* A very large proof of t = u *) in
appThm (appThm (refl f) p p)

(+) = (+)
refl

π

t = u
(+) t = (+) u

appThm
π

t = u
(+) t t = (+) u u

appThm

Need proof sharing!

Proof sharing

Share common subproofs

step1 : proof (t = u) := . . .
step2 : proof ((+) = (+)) := re f l q.
step3 : proof ((+) t = (+) u) := appThm step2 step1.
step4 : proof ((+) t t = (+) u u) := appThm step3 step1.

Need lambda lifting

Term sharing

No implicit arguments in Dedukti

Terms are annotated by their types
Proofs are annotated by their terms and types

Example

step1 : proof (f x = g y) := appThm p q.

Size is at least O(n2)!
Need term sharing

Term sharing

No implicit arguments in Dedukti

Terms are annotated by their types
Proofs are annotated by their terms and types

Example

step1 : proof (f x (= a b) g x) := appThm a b f g x y p q.

Size is at least O(n2)!
Need term sharing

Term sharing

Lambda-lift terms and types to top-level definitions
During translation, keep both the name and the body

Need name for referencing
Need body for analysis

Example

In appThm p q, we need to know that the statement of p is f = g .

Memoization

Results

Package Size (in kB) Verification Percentage
OpenTheory Dedukti time (in s) verified

unit 26 309 0 100%
function 89 1,301 3 100%
pair 195 4,943 15 100%
bool 305 4,258 7 100%
sum 502 20,988 99 100%
option 520 23,815 77 100%
relation 971 42,572 350 100%
list 1,377 68,031 182 100%
real 1,754 68,508 1 1%

natural 1,952 130,111 496 100%
set 2,329 90,819 431 100%
Total 10,020 455,656 1,661 85%

Results

Package Size (in kB) Verification Percentage
OpenTheory Dedukti time (in s) verified

unit 26 116 0.04 100%
function 89 595 0.2 100%
pair 195 1,469 0.73 100%
bool 305 1,824 0.53 100%
sum 502 3,754 1.23 100%
option 520 4,027 1.29 100%
relation 971 8,113 2.99 100%
list 1,377 10,128 3.39 100%
real 1,754 116,758 3.31 100%

natural 1,952 12,542 3.48 100%
set 2,329 18,055 6.17 100%
Total 10,020 72,303 23.36 100%

Target languages

LF modulo embedding
Dedukti
Coq?

LF embedding
Dedukti
Twelf
Coq

LF embedding with implicit arguments
Twelf
Coq?

Target languages

Target languages

Future work

Use smarter sharing

Avoid unnecessary lambda lifting
Use caching methods (Kaliszyk & Krauss 2013)

Translate larger formalizations

Flyspeck? (Kaliszyk & Krauss 2013)

Outline

1 Introduction

2 Pure type systems

3 HOL

4 Coq

5 Focalize

6 Conclusion

Coq

Proof system based on the calculus of inductive constructions

Infinite hierarchy of universes typei
Subtyping typei ⊆ typei+1
Floating universes
Inductive types
Co-inductive types
Modules
...

Large formalizations

4 color theorem, Feit–Thompson theorem, ...

Coqine

Coqine: Coq in Dedukti
Developped by Ali Assaf and Guillaume Burel
Available at: https://gforge.inria.fr/projects/coqine/

Last time:
Proof retrieval
Universe hierarchy
Inductive types
Modules

What’s new?
Plugin architecture
Universe subtyping

https://gforge.inria.fr/projects/coqine/

New architecture

A Coq plugin that is loaded at runtime

Example

Require Coqine Logic Arith.

Dedukti Export Library Logic Arith.

Pros

Directly access the contents of .vo files
No need to reimplement features

Cons

Still rely on the Coq implementation

Universe subtyping in Coq

Infinite hierarchy

Prop,Type0 : Type1 : Type2 : . . .

Cumulative

Prop ⊆ Type0 ⊆ Type1 ⊆ Type2 : . . .

Γ ` A : Typei
Γ ` A : Typei+1

Universe subtyping in Dedukti

Type uniqueness
˙typei : Typei+1

Explicit coercions

↑i : Typei → Typei+1

Multiple representations

Different typing derivations yield different terms

A : Type0 x : A ` B : Type0
Πx : A.B : Type0
Πx : A.B : Type1

↑0 π̇0 a b

A : Type0
A : Type1

x : A ` B : Type0
x : A ` B : Type1

Πx : A.B : Type1
π̇1 (↑0 a) (↑0 b)

Problem with dependent types

In the context

a, b : Type0
p, q : Type1 → Type1

f : Πa, b : Type1. p (Πx : a.b)

g : Πc : Type0. p c → q c
we have

g (Πx : a.b) (f a b) : q (Πx : a.b)

Problem with dependent types

In the context

a, b : Type0
p, q : Type1 → Type1

f : Πa, b : Type1. ε1 (p (π̇1 a b))

g : Πc : Type0. ε1 (p (↑0 c)→ q (↑0 c))
we have

g (π̇0 a b) (f (↑0 a) (↑0 b)) : ε1 (q (↑0 (π̇0 a b)))

Problem with dependent types

In the context

a, b : Type0
p, q : Type1 → Type1

f : Πa, b : Type1. ε1 (p (π̇1 a b))

g : Πc : Type0. ε1 (p (↑0 c)→ q (↑0 c))
we have

g (π̇0 a b) (f (↑0 a) (↑0 b)) 6 : ε1 (q (↑0 (π̇0 a b))) ×
f (↑0 a) (↑0 b) : ε1 (p (π̇1 (↑0 a) (↑0 b)))

Solution: Reflecting equalities

Add equation

↑i (π̇i a b) ≡ π̇i+1 (↑i a) (↑i b)

How does this help?

a, b : Type0
p, q : Type1 → Type1

f : Πa, b : Type1. ε1 (p (π̇1 a b))

g : Πc : Type0. ε1 (p (↑0 c)→ q (↑0 c))

Exercise: Do the same for Prop.

Solution: Reflecting equalities

Add equation

↑i (π̇i a b) ≡ π̇i+1 (↑i a) (↑i b)

How does this help?

a, b : Type0
p, q : Type1 → Type1

f : Πa, b : Type1. ε1 (p (π̇1 a b))

g : Πc : Type0. ε1 (p (↑0 c)→ q (↑0 c))

g (π̇0 a b) (f (↑0 a) (↑0 b)) : ε1 (q (↑0 (π̇0 a b)))

f (↑0 a) (↑0 b) : ε1 (p (π̇1 (↑0 a) (↑0 b)))

Exercise: Do the same for Prop.

Solution: Reflecting equalities

Add equation

↑i (π̇i a b) ≡ π̇i+1 (↑i a) (↑i b)

How does this help?

a, b : Type0
p, q : Type1 → Type1

f : Πa, b : Type1. ε1 (p (π̇1 a b))

g : Πc : Type0. ε1 (p (↑0 c)→ q (↑0 c))

g (π̇0 a b) (f (↑0 a) (↑0 b)) : ε1 (q (↑0 (π̇0 a b))) X
f (↑0 a) (↑0 b) : ε1 (p (↑0 (π̇0 a b)))

Exercise: Do the same for Prop.

With rewrite rules

The main challenge is turning the equations into rewrite rules
Distributing ↑i breaks confluence

↑i (π̇i A B) −→ π̇i+1 (↑i A) (↑i B)

∀i+1x : (↑i A) .B −→ ∀ix : A.B

Need to raise ↑i to the top

↑i (π̇i A B) ←− π̇i+1 (↑i A) (↑i B)

∀ix : A.B ←− ∀i+1x : (↑i A) .B

↑(i)
Prop (∀ix : A.B) ←− π̇i A

(
↑(i)
Prop B

)
Corresponds to minimal typing!

With rewrite rules

The main challenge is turning the equations into rewrite rules
Distributing ↑i breaks confluence

↑i (π̇i A B) −→ π̇i+1 (↑i A) (↑i B)

∀i+1x : (↑i A) .B −→ ∀ix : A.B

Need to raise ↑i to the top

↑i (π̇i A B) ←− π̇i+1 (↑i A) (↑i B)

∀ix : A.B ←− ∀i+1x : (↑i A) .B

↑(i)
Prop (∀ix : A.B) ←− π̇i A

(
↑(i)
Prop B

)
Corresponds to minimal typing!

Properties

Terms must have a unique representation

Theorem (Canonicity)

If M ≡ M ′ then [M] ≡ [M ′].

Essential for correctness

Theorem (Correctness)

If Γ `Coq M : A then JΓK `λΠ' [M] : JAK.

Future work

Universe polymorphism
Better translation

of inductive types
of modules

Translate the standard library

Outline

1 Introduction

2 Pure type systems

3 HOL

4 Coq

5 Focalize

6 Conclusion

Focalize

An environment to develop certified programs

A functional programming language with object-oriented
features

Different from usual setting

Objects and inheritance
Non-termination

http://focalize.inria.fr/

http://focalize.inria.fr/

Focalize

class OrderingNat = {
rep = nat ;
methods :

abstract leq : rep −> rep −> bool ;
geq : rep −> rep −> bool ;
geq this n = leq n this ;
l t : rep −> rep −> bool ;
l t this n = (leq this n) && ~~(geq this n) ;
gt : rep −> rep −> bool ;
gt this n = l t n this ;
abstract leq_refl : f o r a l l n : rep , leq n n;
abstract leq_asym : fo ra l l n, m : rep , . . . ;
abstract leq_trans : f o ra l l n, m, p : rep , . . . ;

}

Backends

Built with interoperability in mind
Proof backends:

Zenon
Coq

Dedukti

Backends

Built with interoperability in mind
Proof backends:

Zenon
Coq

Dedukti

Focalide

Focalide: Focalize in Dedukti
Developed by Raphaël Cauderlier
Available in branch focalide of Focalize:
http://focalize.inria.fr/download/

Current features:
Objects
Inheritence
Specifications

Work in progress:
Proofs

http://focalize.inria.fr/download/

Results

File Size (kb) Factor Typing
Original Translation

basics 23 4.3 0.19 OK
sets 6.3 56 8.9 OK

products 14 250 18 KO
lattices 22 333 15 OK
orders 7.6 625 83 OK

strict_orders 7.1 120 17 OK
orders_and_lattices 19 740 39 OK

wellfounded 4.5 176 40 KO
sums 20 589 30 KO

quotients 8.4 214 25 OK
fix 24 KO KO KO

Total 132 3107 24 71%

Outline

1 Introduction

2 Pure type systems

3 HOL

4 Coq

5 Focalize

6 Conclusion

Conclusion

Theoretical and practical challenges
Solving these challenges leads to better specifications
One step closer towards interoperability

Other/future work:
Proof assistants: PVS, Agda
Theorem provers: Zenon (modulo), iProver (modulo)

	Introduction
	Pure type systems
	HOL
	Coq
	Focalize
	Conclusion

