
Mixing HOL and Coq in Dedukti

Ali Assaf1,2 and Raphaël Cauderlier1,3

1Inria Paris-Rocquencourt
2Ecole Polytechnique

3CNAM/Cédric

PxTP 2015
Aug 3, 2015



Outline

1 Introduction

2 Merging the theories

3 Case study



This talk

Dedukti

HOL Coq

Holide Coqine

Warning: highly experimental!



This talk

Dedukti

HOL Coq

Holide Coqine

Warning: highly experimental!



Tools

Dedukti:
Type-checker for the λΠ-calculus modulo rewriting (λΠR)
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Holide: translation of HOL to Dedukti through OpenTheory
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Coq:
Prover based on the calculus of inductive constructions (CIC)
Coqine: translation of Coq to Dedukti
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Coqine

Translation of Coq to Dedukti
Version 1.0 by Boespflug and Burel (2012)

Inductive types X
Modules X
No universe hierarchy: Type : Type X

Version 2.0 by Assaf (2015)

Universe hierarchy: Typei : Typei+1 X
Universe cumulativity: Typei ⊆ Typei+1 X
Work in progress
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Why use a logical framework?

Independent proof checking (see previous talk)
Better understanding of logics
Interoperability
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Goal

Have:
Γ `HOL A =⇒ ΣH , JΓKH `λΠR M : JAKH
∆ `Coq B =⇒ ΣC , J∆KC `λΠR N : JBKC

Want:

ΣC+H , JΓKH , J∆KC `λΠR (M,N) : JAKH ∧ JBKC
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Challenges

Propositions might be represented differently
The logics might be incompatible
Datatypes might be defined differently



Obstacle I: Type inhabitation

In HOL, all types are inhabited

∀A. selectA (λx .>) : A

In Coq, some types are empty

@M. ` M : ⊥

Union is inconsistent! X

(`HOL ∃x : α.>) ∧ (`COQ ¬∀α.∃x : α.>)
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Type inhabitation

Solution (Keller and Werner 2010): interpret HOL types as
inhabited Coq types

htype := Σα : ctype︸ ︷︷ ︸
carrier

. α︸︷︷︸
witness

Can be lifted to arrow types:

harrow a b := (carrow (carrier a) (carrier b) , λx .witness b)

Consistent union: X

hterm a := cterm (carrier a)
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Obstacle II: Bool vs Prop

In HOL:
Propositions are the terms of type bool
No difference between propositions and booleans
Classical system:

∀p. (p = >) ∨ (p = ⊥)

In Coq:
Propositions are the terms of type Prop (which is in Type1)
Booleans are the terms of the inductive type bool
(which is in Type0):

Inductive bool := true | false.

Intuitionistic system
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Bool vs Prop

type

bool nat list ? Type0

nat list ?

Prop

bool

Type1

...

HOL Coq



Bool vs Prop

2 solutions:
Place HOL types in Type0 and reflect HOL booleans into Coq
propositions:

hproof b := cproof (istrue b)

Place HOL types in Type1 and identify HOL booleans with
Coq propositions

Law of excluded middle...
... vs. Prop elimination?

In our work: option 1 X
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Case study

In HOL:
Natural numbers
Partial order ≤ (with proofs of reflexivity, transitivity, etc.)

In Coq:
Polymorphic lists
Insertion sort algorithm parametrized by a partial order
Proof of correctness

Theorem sorted_insertion_sort:
forall l, sorted (insertion_sort l).

Theorem perm_insertion_sort:
forall l, permutation l (insertion_sort l).
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In Dedukti

1 Translate the two developments to Dedukti.
2 Link the results together.
3 ???
4 Profit!!!



Linking

Linking consists of writing a file (interop.dk):
Instanciating the Coq development with HOL natural numbers
Interfacing the proofs of the two systems
Proving that the theorems needed by the Coq proofs are indeed
those given by HOL (e.g. HOL comparison is total w.r.t. Coq)

Result:

Πl : cterm1 (clist hnat) . cproof (sorted (insertion_sort compare l))

Πl : cterm1 (clist hnat) . cproof (permutation l (insertion_sort compare l))
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Components

bool . dk nat . dk

OpenTheory standard library

Dat at ypes. dk Logi c. dk

Coq standard library

coq+hol . dk sor t . dk

i nt er op. dk



Limitations

A lot of manual work needed for linking

Need tools for automation

Developments largely orthogonal (except for bool).

How to mix HOL natural numbers with Coq natural numbers?

Sorting “algorithm” freezes because HOL is not computational

Importance of having computational embeddings



Conclusion

Using Dedukti as a platform for interoperability
Case study of sorting Coq lists of HOL natural numbers
Lots of future work perspectives

http://dedukti-interop.gforge.inria.fr/

Thank you!

for real this time :-)

http://dedukti-interop.gforge.inria.fr/
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