
Conservativity of embeddings
in the λΠ-calculus modulo rewriting

Ali Assaf

Deducteam, Inria, Paris
Ecole Polytechnique, Palaiseau

TLCA
June 2, 2015

8 years ago...

Embedding Pure Type Systems

in the lambda-Pi-calculus modulo

Denis Cousineau and Gilles Dowek

École polytechnique and INRIA
LIX, École polytechnique, 91128 Palaiseau Cedex, France.

Cousineau@lix.polytechnique.fr, http://www.lix.polytechnique.fr/~cousineau

Gilles.Dowek@polytechnique.edu, http://www.lix.polytechnique.fr/~dowek

Abstract. The lambda-Pi-calculus allows to express proofs of minimal
predicate logic. It can be extended, in a very simple way, by adding com-
putation rules. This leads to the lambda-Pi-calculus modulo. We show
in this paper that this simple extension is surprisingly expressive and, in
particular, that all functional Pure Type Systems, such as the system F,
or the Calculus of Constructions, can be embedded in it. And, moreover,
that this embedding is conservative under termination hypothesis.

The λΠ-calculus is a dependently typed lambda-calculus that allows to ex-
press proofs of minimal predicate logic through the Brouwer-Heyting-Kolmogorov
interpretation and the Curry-de Bruijn-Howard correspondence. It can be ex-
tended in several ways to express proofs of some theory. A first solution is to
express the theory in Deduction modulo [7, 9], i.e. to orient the axioms as rewrite
rules and to extend the λΠ-calculus to express proofs in Deduction modulo [3].
We get this way the λΠ-calculus modulo. This idea of extending the dependently
typed lambda-calculus with rewrite rules is also that of Intuitionistic type theory
used as a logical framework [13].

A second way to extend the λΠ-calculus is to add typing rules, in particular
to allow polymorphic typing. We get this way the Calculus of Constructions
[4] that allows to express proofs of simple type theory and more generally the
Pure Type Systems [2, 15, 1]. These two kinds of extensions of the λΠ-calculus
are somewhat redundant. For instance, simple type theory can be expressed
in deduction modulo [8], hence the proofs of this theory can be expressed in
the λΠ-calculus modulo. But they can also be expressed in the Calculus of
Constructions. This suggests to relate and compare these two ways to extend
the λΠ-calculus.

We show in this paper that all functional Pure Type Systems can be em-
bedded in the λΠ-calculus modulo using an appropriate rewrite system. This
rewrite system is inspired both by the expression of simple type theory in Deduc-
tion modulo and by the mechanisms of universes à la Tarski [12] of Intuitionistic
type theory. In particular, this work extends Palmgren’s construction of an im-
predicative universe in type theory [14].

Pure type systems

Large family of typed lambda calculi λS
Parametrized by a specification S of allowed types

dependent types,

polymorphism,

type operators,

...

The λΠ-calculus modulo rewriting

λΠR = lambda calculus + dependent types + rewriting

Curry-Howard version of deduction modulo
Logical framework

Logical framework

Curry-Howard:

Γ `L A ⇐⇒ JΓK `λL M : JAK

Logical framework:

Γ `L A ⇐⇒ ΣL, JΓK `LF M : JAK

Logical framework

Curry-Howard:

Γ `L A ⇐⇒ JΓK `λL M : JAK

Logical framework:

Γ `L A ⇐⇒ ΣL, JΓK `LF M : JAK

Embedding pure type systems

Source language = PTS λS
Target language = λΠR

Γ `λS M : A =⇒ ΣS , JΓK `λΠR M ′ : JAK

This talk:

Γ `λS M : A ⇐= ΣS , JΓK `λΠR M ′ : JAK ?

Embedding pure type systems

Source language = PTS λS
Target language = λΠR

Γ `λS M : A =⇒ ΣS , JΓK `λΠR M ′ : JAK

This talk:

Γ `λS M : A ⇐= ΣS , JΓK `λΠR M ′ : JAK ?

1 The embedding

2 Conservativity

Pure type systems

A PTS specification S is a triple (S,A,R) where:
S is the set of sorts
A ⊆ S × S is the set of axioms
R ⊆ S × S × S is the the of rules

Syntax:
x | s | Πx : A.B | λx : A.M | M N

Pure type systems

A PTS specification S is a triple (S,A,R) where:
S is the set of sorts
A ⊆ S × S is the set of axioms
R ⊆ S × S × S is the the of rules

Syntax:
x | s | Πx : A.B | λx : A.M | M N

Typing rules

Γ ` M : A

(x : A) ∈ Γ

Γ ` x : A
(s1, s2) ∈ A
Γ ` s1 : s2

Γ ` A : s1 Γ, x : A ` B : s2 (s1, s2, s3) ∈ R
Γ ` Πx : A.B : s3

Γ, x : A ` M : B Γ ` Πx : A.B : s
Γ ` λx : A.M : Πx : A.B

Γ ` M : Πx : A.B Γ ` N : A
Γ ` M N : B {x\N}

Γ ` M : A Γ ` B : s A ≡β B
Γ ` M : B

Γwell-formed

∅well-formed
Γwell-formed Γ ` A : s

Γ, x : Awell-formed

Embedding system F

Signature:

type : Type
arrow : type→ type→ type
forall : (type→ type)→ type

term : type→ Type
term (arrow a b) 7−→ term a→ term b
term (forall f) 7−→ Πa : type. term (f x)

Embedding system F

Translation:
[a] = a
[A→ B] = arrow [A] [B]
[∀a.B] = forall (λa. [B])

JAK = term [A]

[x] = x
[λx : A.M] = λx : JAK . [M]
[M N] = [M] [N]
[Λa.M] = λa : type. [M]
[M 〈A〉] = [M] [A]

Comparison

Identity LF C&D

Preserves computation X X X
Encodes higher-order X X X

Preservation of reduction/typing

Theorem ([CD07])
If M −→β M ′ then [M] −→+

β [M ′].

Theorem ([CD07])
If Γ `λS M : A then ΣS , JΓK `λΠR [M] : JAK.

Works for any functional pure type system:
System F
Calculus of constructions
Higher-order logic

What about the converse?

Preservation of reduction/typing

Theorem ([CD07])
If M −→β M ′ then [M] −→+

β [M ′].

Theorem ([CD07])
If Γ `λS M : A then ΣS , JΓK `λΠR [M] : JAK.

Works for any functional pure type system:
System F
Calculus of constructions
Higher-order logic

What about the converse?

1 The embedding

2 Conservativity

But first...

... why 8 years?

Undergrad: 3 years
Masters: 2 years
PhD: 3 years

Total: 3 + 2 + 3 = 8 years

But first...

... why 8 years?

Undergrad: 3 years
Masters: 2 years
PhD: 3 years

Total: 3 + 2 + 3 = 8 years

But first...

... why 8 years?

Undergrad: 3 years
Masters: 2 years
PhD: 3 years

Total: 3 + 2 + 3 = 8 years

But first...

... why 8 years?

Undergrad: 3 years
Masters: 2 years
PhD: 3 years

Total: 3 + 2 + 3 = 8 years

In λΠ

In λΠ, conservativity is traditionally proved using strong
normalization (SN):

λΠ is SN
Adding declarations in Σ does not affect SN
Conservativity proved by induction on the normal forms

Fact

Bijection between terms of λS and classes of β-equivalent terms of
λΠRS .

In λΠR

The introduction of rewrite rules could break SN...

because R is not SN,
or because β ∪ R is not SN,
or because β is not SN anymore.

Cousineau and Dowek (2007): proof of conservativity
assuming λΠRS is SN.

Open problem!

In λΠR

The introduction of rewrite rules could break SN...

because R is not SN,
or because β ∪ R is not SN,
or because β is not SN anymore.

Cousineau and Dowek (2007): proof of conservativity
assuming λΠRS is SN.

Open problem!

In λΠR

The introduction of rewrite rules could break SN...

because R is not SN,
or because β ∪ R is not SN,
or because β is not SN anymore.

Cousineau and Dowek (2007): proof of conservativity
assuming λΠRS is SN.

Open problem!

Approach 1: absolute normalization

Idea: build a model for λΠRS

in the algebra of reducibility candidates
or in a general notion of Π-algebra.

The model implies strong normalization of λΠRS . Use this to prove
conservativity.

Theorem ([Dow14])
There is a model for λΠRHOLand for λΠRCC .

Approach 1: absolute normalization

Idea: build a model for λΠRS

in the algebra of reducibility candidates
or in a general notion of Π-algebra.

The model implies strong normalization of λΠRS . Use this to prove
conservativity.

Theorem ([Dow14])
There is a model for λΠRHOLand for λΠRCC .

Absolute normalization

Problem: Implies strong normalization of λS , so at least as hard
proving strong normalization of λS!

M −→β M ′ =⇒ [M] −→+
β [M ′]

M 6∈ SN =⇒ [M] 6∈ SN

M ∈ SN ⇐= [M] ∈ SN

Tricky to do

Anyone wants to try ΣCCω? Brrrr...

Duplicates work

Can’t we use the fact that λS is SN?

Absolute normalization

Problem: Implies strong normalization of λS , so at least as hard
proving strong normalization of λS!

M −→β M ′ =⇒ [M] −→+
β [M ′]

M 6∈ SN =⇒ [M] 6∈ SN

M ∈ SN ⇐= [M] ∈ SN

Tricky to do

Anyone wants to try ΣCCω? Brrrr...

Duplicates work

Can’t we use the fact that λS is SN?

Absolute normalization

Problem: Implies strong normalization of λS , so at least as hard
proving strong normalization of λS!

M −→β M ′ =⇒ [M] −→+
β [M ′]

M 6∈ SN =⇒ [M] 6∈ SN

M ∈ SN ⇐= [M] ∈ SN

Tricky to do

Anyone wants to try ΣCCω? Brrrr...

Duplicates work

Can’t we use the fact that λS is SN?

Absolute normalization

Problem: Implies strong normalization of λS , so at least as hard
proving strong normalization of λS!

M −→β M ′ =⇒ [M] −→+
β [M ′]

M 6∈ SN =⇒ [M] 6∈ SN

M ∈ SN ⇐= [M] ∈ SN

Tricky to do

Anyone wants to try ΣCCω? Brrrr...

Duplicates work

Can’t we use the fact that λS is SN?

Approach 2: relative normatlization

If JΓK ` M : JAK, what can we say about M?

Example

If S is the simply-typed λ-calculus, the polymorphic identity
function is not well-typed, so:

b : Type 6` (λa : Type. λx : b. x) b : b → b

Its translation is well-typed in λΠRS :

b : type ` (λa : type. λx : term a. x) b : term b → term b

But it reduces to λx : b. x of type b → b in λS .

Approach 2: relative normatlization

If JΓK ` M : JAK, what can we say about M?

Example

If S is the simply-typed λ-calculus, the polymorphic identity
function is not well-typed, so:

b : Type 6` (λa : Type. λx : b. x) b : b → b

Its translation is well-typed in λΠRS :

b : type ` (λa : type. λx : term a. x) b : term b → term b

But it reduces to λx : b. x of type b → b in λS .

Approach 2: relative normatlization

If JΓK ` M : JAK, what can we say about M?

Example

If S is the simply-typed λ-calculus, the polymorphic identity
function is not well-typed, so:

b : Type 6` (λa : Type. λx : b. x) b : b → b

Its translation is well-typed in λΠRS :

b : type ` (λa : type. λx : term a. x) b : term b → term b

But it reduces to λx : b. x of type b → b in λS .

Relative normalization

What have we learned?
1 λΠRS can type more terms than λS .
2 These terms can be used to construct proofs for the

translation of λS types.
3 The λΠRS terms that inhabit the translation of λS types can

be reduced to the translation of λS terms.

Idea: reduce only what is necessary to fall back in λS .

Relative normalization

What have we learned?
1 λΠRS can type more terms than λS .
2 These terms can be used to construct proofs for the

translation of λS types.
3 The λΠRS terms that inhabit the translation of λS types can

be reduced to the translation of λS terms.
Idea: reduce only what is necessary to fall back in λS .

Erasure

Define an erasure:

ϕ (x) = x
ϕ (λx : A.M) = λx : ψ (A) . ϕ (M)

ϕ (M N) = ϕ (M)ϕ (N)

ψ (type) = Type
ψ (termA) = ϕ (A)

ψ (A→ B) = ψ (A)→ ψ (B)

Erasure is the inverse of the translation:

ϕ ([M]) = M
ψ (JAK) = A

Erasure

Example

ϕ (((λa : type. λx : term a. x) b)) = (λa : Type. λx : a. x) b

Not well-typed in λ→ because there is no (Kind,Type,−) rule.
Need to allow more types.

Minimal completion

We define the following completion ([SP94]).

Definition

The minimal completion of S is S∗ = (S∗,A∗,R∗) where
S∗ = S] {τ}
A∗ = A ∪ {(s1, τ) |6 ∃ s2 ∈ S, (s1, s2) ∈ A}
R∗ = R∪ {(s1, s2, τ) |6 ∃ s3 ∈ S, (s1, s2, s3) ∈ R}

Example

Example

In λ∗→,
b : Type ` (λa : Type. λx : a. x) b : b → b

because

` Type : Kind a : Type ` a→ a : Type (Kind,Type, τ) ∈ R∗

` Πa : Type. a→ a : τ

How do we go back to λS?

Example

Example

In λ∗→,
b : Type ` (λa : Type. λx : a. x) b : b → b

because

` Type : Kind a : Type ` a→ a : Type (Kind,Type, τ) ∈ R∗

` Πa : Type. a→ a : τ

How do we go back to λS?

Reducibility

Let Γ `λS well-formed and Γ `λS∗ M : A : s.
Define the predicate Γ
 M : A by induction on A:

If A : s 6= τ or A 6= Πx : B.C then M −→∗ M ′ and A −→∗ A′
such that Γ `λS M ′ : A′.

If A : τ and A = Πx : B.C then for all N such that Γ
 N : B ,
Γ
 M N : C {x\N}.

If σ is a substitution mapping variables to terms:
Γ
 σ : ∆ when Γ
 σ (x) : σ (A) for all (x : A) ∈ Γ.

Reducibility

Let Γ `λS well-formed and Γ `λS∗ M : A : s.
Define the predicate Γ
 M : A by induction on A:

If A : s 6= τ or A 6= Πx : B.C then M −→∗ M ′ and A −→∗ A′
such that Γ `λS M ′ : A′.

If A : τ and A = Πx : B.C then for all N such that Γ
 N : B ,
Γ
 M N : C {x\N}.

If σ is a substitution mapping variables to terms:
Γ
 σ : ∆ when Γ
 σ (x) : σ (A) for all (x : A) ∈ Γ.

Reducibility

Let Γ `λS well-formed and Γ `λS∗ M : A : s.
Define the predicate Γ
 M : A by induction on A:

If A : s 6= τ or A 6= Πx : B.C then M −→∗ M ′ and A −→∗ A′
such that Γ `λS M ′ : A′.

If A : τ and A = Πx : B.C then for all N such that Γ
 N : B ,
Γ
 M N : C {x\N}.

If σ is a substitution mapping variables to terms:
Γ
 σ : ∆ when Γ
 σ (x) : σ (A) for all (x : A) ∈ Γ.

Reducibility

Let Γ `λS well-formed and Γ `λS∗ M : A : s.
Define the predicate Γ
 M : A by induction on A:

If A : s 6= τ or A 6= Πx : B.C then M −→∗ M ′ and A −→∗ A′
such that Γ `λS M ′ : A′.

If A : τ and A = Πx : B.C then for all N such that Γ
 N : B ,
Γ
 M N : C {x\N}.

If σ is a substitution mapping variables to terms:
Γ
 σ : ∆ when Γ
 σ (x) : σ (A) for all (x : A) ∈ Γ.

Conservativity

Theorem

If ∆ `λS∗ M : A : s then for any Γ, σ such that
Γ
 σ : ∆,Γ
 σ(M) : σ(A).

Proof.

By induction on the derivation of ∆ ` M : A.

Corollary (Conservativity)

If ΣS , JΓK `λΠR M : JAK then ϕ (M) −→∗β M ′ such that
Γ `λS M ′ : A.

Proof.

By taking the identity substitution, ψ (σ(JAK)) = ψ (JAK) = A.

Conservativity

Theorem

If ∆ `λS∗ M : A : s then for any Γ, σ such that
Γ
 σ : ∆,Γ
 σ(M) : σ(A).

Proof.

By induction on the derivation of ∆ ` M : A.

Corollary (Conservativity)

If ΣS , JΓK `λΠR M : JAK then ϕ (M) −→∗β M ′ such that
Γ `λS M ′ : A.

Proof.

By taking the identity substitution, ψ (σ(JAK)) = ψ (JAK) = A.

Relative normalization

Avoid complex techniques such as reducibility candidates.
Works for non-terminating theories! (e.g. system U)

Conclusion

Summary:
Embedding of PTSs in λΠ-calculus modulo rewriting
Preserves reductions, preserves typing
Proof of conservativity by showing relative normalization
Implies weak normalization of λΠRS

Future work:
Adapt proof to show strong normalization of λΠRS

Thank you!

Conclusion

Summary:
Embedding of PTSs in λΠ-calculus modulo rewriting
Preserves reductions, preserves typing
Proof of conservativity by showing relative normalization
Implies weak normalization of λΠRS

Future work:
Adapt proof to show strong normalization of λΠRS

Thank you!

Conclusion

Summary:
Embedding of PTSs in λΠ-calculus modulo rewriting
Preserves reductions, preserves typing
Proof of conservativity by showing relative normalization
Implies weak normalization of λΠRS

Future work:
Adapt proof to show strong normalization of λΠRS

Thank you!

References

Denis Cousineau and Gilles Dowek.
Embedding pure type systems in the lambda-Pi-calculus
modulo.
In Typed Lambda Calculi and Applications (TLCA), 2007.

Gilles Dowek.
Models and termination of proof-reduction in the λΠ-calculus
modulo theory.
arXiv:1501.06522, 2014.

Paula Severi and Erik Poll.
Pure type systems with definitions.
In Logical Foundations of Computer Science (LFCS), 1994.

	The embedding
	Conservativity

