Soundness of embeddings in the $\lambda\Pi$ -calculus modulo rewriting

Ali Assaf

Deducteam, Inria Paris-Rocquencourt École Polytechnique

> Parsifal seminar October 16, 2014

1 The $\lambda\Pi$ -calculus as a logical framework

2 The $\lambda \Pi$ -calculus modulo rewriting as a logical framework

3 Soundness in the $\lambda\Pi$ -calculus modulo

The $\lambda\Pi$ -calculus

- \blacksquare Simplest typed $\lambda\text{-calculus}$ with dependent types
- Expresses proofs of first-order logic through the Curry-Howard correspondence
- Used as a logical framework

sorts s ::= **Type** | **Kind** terms M, N, A, B ::= $x | s | \Pi x : A. B | \lambda x : A. M | M N$ contexts Γ ::= $\cdot | \Gamma, x : A$

$\Gamma \vdash M : A$

$$\frac{WF(\Gamma)}{WF(\cdot)} \qquad \frac{WF(\Gamma) \quad \Gamma \vdash A:s}{WF(\Gamma, x:A)}$$

Logical framework in Wikipedia:

In logic, a logical framework provides a means to define (or present) a logic as a signature in a higher-order type theory in such a way that provability of a formula in the original logic reduces to a type inhabitation problem in the framework type theory. Logical framework in Wikipedia:

In logic, a logical framework provides a means to define (or present) a logic as a signature in a higher-order type theory in such a way that provability of a formula in the original logic reduces to a type inhabitation problem in the framework type theory.

To embed a given theory X in $\lambda \Pi$, one must:

- **1** define a signature context Σ in $\lambda \Pi$ describing the theory X
- 2 define a *translation* from the terms of X to the terms of $\lambda \Pi$ in the context Σ .

Define the signature context Σ as:

- term : type \rightarrow **Type** lam : (term $A \rightarrow$ term B) \rightarrow term (arrow AB) app : term (arrow AB) \rightarrow term $A \rightarrow$ term BLam : (ΠA : type. term (FA)) \rightarrow term (forall F) App : term (forall F) $\rightarrow \Pi A$: type. term (FA)

Translate the types and the terms as:

$$[\alpha] = \alpha$$

$$[A \rightarrow B] = \operatorname{arrow} [A] [B]$$

$$[\forall \alpha : \mathbf{Type.} B] = \operatorname{forall} (\lambda \alpha : \operatorname{type.} [B])$$

$$[x] = x$$

$$[\lambda x : A. M] = \text{lam} (\lambda x : \text{term} [A]. [M])$$

$$[M N] = \text{app} [M] [N]$$

$$[\Lambda \alpha : \textbf{Type.} M] = \text{Lam} (\lambda \alpha : \text{type.} [M])$$

$$[M \langle A \rangle] = \text{App} [M] [A]$$

Example

The identity function $id = \Lambda \alpha$: **Type**. $\lambda x : \alpha . x$ is translated as:

$$[\mathsf{id}] = \mathsf{Lam} \left(\lambda \alpha : \mathsf{type.} \, \mathsf{lam} \left(\lambda x : \mathsf{term} \, \alpha. \, x \right) \right)$$

The type $A = \forall \alpha :$ **Type**. $\alpha \to \alpha$ is translated as:

 $[A] = \text{forall} (\lambda \alpha : \text{type. arrow } \alpha \alpha)$

If *M* is well-typed then [M] is well-typed in the context Σ :

$$\vdash M : A \implies \Sigma \vdash [M] : \operatorname{term} [A]$$

If *M* is well-typed then [M] is well-typed in the context Σ :

 $\vdash M : A \implies \Sigma \vdash [M] : \operatorname{term} [A]$

Define $\llbracket A \rrbracket = \text{term} [A]$:

$$\vdash M : A \implies \Sigma \vdash [M] : \llbracket A \rrbracket$$

If *M* is well-typed then [M] is well-typed in the context Σ :

$$\vdash M : A \implies \Sigma \vdash [M] : \operatorname{term} [A]$$

Define $\llbracket A \rrbracket = \text{term} [A]$:

$$\vdash M : A \implies \Sigma \vdash [M] : \llbracket A \rrbracket$$

If *M* is well-typed in Γ then [*M*] is well-typed in the context Σ , [[Γ]]:

$$\Gamma \vdash M : A \implies \Sigma, \llbracket \Gamma \rrbracket \vdash [M] : \llbracket A \rrbracket$$

Example

The self-application of id is well-typed in the empty context:

 $\vdash \mathsf{id} \langle A \rangle \, \mathsf{id} : A$

Its translation is well-typed in Σ :

 $\Sigma \vdash \mathsf{app}\,(\mathsf{App}\,[\mathsf{id}]\,\llbracket A \rrbracket)\,[\mathsf{id}]:\llbracket A \rrbracket$

 If M is a proof of (has type) A in X then [M] is a proof of (has type) [A] in λΠ.

- If M is a proof of (has type) A in X then [M] is a proof of (has type) [A] in λΠ.
- If A is provable (is inhabited) in X then [A] is provable (is inhabited) in λΠ.

Completeness

- If M is a proof of (has type) A in X then [M] is a proof of (has type) [A] in λΠ.
- If A is provable (is inhabited) in X then [A] is provable (is inhabited) in λΠ.
- If X is inconsistent (every A is inhabited) then λΠ is inconsistent (every [A] is inhabited).

Completeness

- If M is a proof of (has type) A in X then [M] is a proof of (has type) [A] in λΠ.
- If A is provable (is inhabited) in X then [A] is provable (is inhabited) in λΠ.
- If X is inconsistent (every A is inhabited) then λΠ is inconsistent (every [A] is inhabited).

What about the converse?

1 Consistency: if X is consistent then $\lambda \Pi$ is consistent.

- **1** Consistency: if X is consistent then $\lambda \Pi$ is consistent.
- 2 Conservativity: if [[A]] is provable in λΠ then A is provable in X.

- **1** Consistency: if X is consistent then $\lambda \Pi$ is consistent.
- 2 Conservativity: if [[A]] is provable in λΠ then A is provable in X.
- Adequacy: every (normal) proof in λΠ corresponds to a proof in X.

- **1** Consistency: if X is consistent then $\lambda \Pi$ is consistent.
- Conservativity: if [[A]] is provable in λΠ then A is provable in X.
- Adequacy: every (normal) proof in λΠ corresponds to a proof in X.

These are important properties for a logical framework!

- **Source** = X, Target = $\lambda \Pi$
- **Embedding** = signature Σ + translation [·]
- **Completeness** = typing in $X \implies$ typing in $\lambda \Pi$
- **Soundness** = typing in $\lambda \Pi \implies$ typing in X

1 The $\lambda \Pi$ -calculus as a logical framework

2 The $\lambda \Pi$ -calculus modulo rewriting as a logical framework

3 Soundness in the $\lambda\Pi$ -calculus modulo

The embedding does not preserve term (proof) reduction :

$$M \longrightarrow^* M' \implies [M] \longrightarrow^* [M']$$

The embedding does not preserve term (proof) reduction :

$$M \longrightarrow^* M' \implies [M] \longrightarrow^* [M']$$

The embedding does not preserve term (proof) equivalence:

$$M \equiv M' \implies [M] \equiv [M']$$

Systems with dependent types (e.g. the calculus of constructions) have a conversion rule:

$$\frac{\Gamma \vdash M : A \qquad A \equiv B}{\Gamma \vdash M : B}$$

In $\lambda\Pi$, $\llbracket\Gamma\rrbracket \vdash [M] : \llbracketA\rrbracket$ but $\llbracket\Gamma\rrbracket \not\vdash [M] : \llbracketB\rrbracket$ (no completeness).

Approach 1: Introduce explicit equivalence judgements and a conversion term:

equiv	:	$type \to type \to Type$
refl	:	equiv <i>M M</i>
beta	:	$\operatorname{equiv}(\operatorname{app}(\operatorname{Iam} F)N)(FN)$
•••		
conv	:	term $A \rightarrow $ equiv A B $\rightarrow $ term E

Cons:

- Need to explicitely give the equivalence derivations.
- Adding conv pollutes the structure of the terms and needs to be taken care of in the equivalence relation.

Approach 2: Translate typing derivations instead of λ -terms

```
term : Type

lam : (term \rightarrow term) \rightarrow term

...

hastype : term \rightarrow type \rightarrow Type

typelam : (\Pi x : term. hastype x A \rightarrow hastype (F x) B) \rightarrow

hastype (lam F) (arrow A B)
```

Pros:

. . .

 \blacksquare conv does not interfere with the structure of the $\lambda\text{-terms}.$ Cons:

- Lose Curry-Howard correspondence?
- Still need to explicitely give the equivalence derivations.

Idea: extend the conversion rule of the $\lambda\Pi$ -calculus with a rewrite system *R*:

$$\frac{\Gamma \vdash M : A \qquad \Gamma \vdash B : \mathbf{Type} \qquad A \equiv_{\beta R} B}{\Gamma \vdash M : B}$$

Idea: extend the conversion rule of the $\lambda\Pi$ -calculus with a rewrite system *R*:

$$\frac{\Gamma \vdash M : A \qquad \Gamma \vdash B : \mathbf{Type} \qquad A \equiv_{\beta R} B}{\Gamma \vdash M : B}$$

Add rewrite rules so that the translation preserves reduction.

Idea: extend the conversion rule of the $\lambda\Pi$ -calculus with a rewrite system *R*:

$$\frac{\Gamma \vdash M : A \qquad \Gamma \vdash B : \mathbf{Type} \qquad A \equiv_{\beta R} B}{\Gamma \vdash M : B}$$

Add rewrite rules so that the translation preserves reduction (in addition to binding and typing).

Signature context Σ :

- type : Type
- arrow : type \rightarrow type \rightarrow type
 - term : type \rightarrow **Type** lam : (term $A \rightarrow$ term B) \rightarrow term (arrow AB) app : term (arrow AB) \rightarrow term $A \rightarrow$ term B

Rewrite rules R:

$$\operatorname{app}(\operatorname{lam} F) N \longrightarrow F N$$

Preserving reduction

Signature context Σ :

- type : **Type** arrow : type \rightarrow type \rightarrow type
 - term : type \rightarrow **Type** lam : (term $A \rightarrow$ term B) \rightarrow term (arrow AB) app : term (arrow AB) \rightarrow term $A \rightarrow$ term B

Rewrite rules R:

term (arrow AB) \longrightarrow term $A \rightarrow$ term Blam $F \longrightarrow F$ app $MN \longrightarrow MN$

Preserving reduction

Signature context Σ :

- $\begin{array}{rll} \mathsf{type} & : & \mathbf{Type} \\ \mathsf{arrow} & : & \mathsf{type} \to \mathsf{type} \to \mathsf{type} \end{array}$
 - term : type \rightarrow **Type**

Rewrite rules R:

term (arrow AB) \longrightarrow term $A \rightarrow$ term B

Translation:

$$\begin{bmatrix} \lambda x : A. M \end{bmatrix} = \lambda x : \llbracket A \rrbracket. \llbracket M \end{bmatrix}$$
$$\begin{bmatrix} M N \end{bmatrix} = \llbracket M \rrbracket \llbracket N \end{bmatrix}$$

Preserving reduction

Theorem

If $M \longrightarrow M'$ then $[M] \longrightarrow^+ [M']$.
Preserving reduction

Theorem

If
$$M \longrightarrow M'$$
 then $[M] \longrightarrow^+ [M']$.

Corollary

If
$$M \longrightarrow^* M'$$
 then $[M] \longrightarrow^* [M']$.

Preserving reduction

Theorem

If
$$M \longrightarrow M'$$
 then $[M] \longrightarrow^+ [M']$.

Corollary

If
$$M \longrightarrow^* M'$$
 then $[M] \longrightarrow^* [M']$.

Corollary

If $M \equiv M'$ then $[M] \equiv [M']$.

Recovered typing preservation.

Theorem (Cousineau & Dowek 2007)

If $\Gamma \vdash M : A$ then $\Sigma, \llbracket \Gamma \rrbracket \vdash [M] : \llbracket A \rrbracket$.

Works for any functional pure type system:

- System F
- Calculus of constructions
- Simple type theory

Recovered typing preservation.

Theorem (Cousineau & Dowek 2007)

If $\Gamma \vdash M : A$ then $\Sigma, \llbracket \Gamma \rrbracket \vdash [M] : \llbracket A \rrbracket.$

Works for any functional pure type system:

- System F
- Calculus of constructions
- Simple type theory

What about soundness?

• $\lambda \Pi$ is strongly normalizing

- $\lambda \Pi$ is strongly normalizing
- Adding axioms (Σ) does not influence termination

- $\lambda \Pi$ is strongly normalizing
- Adding axioms (Σ) does not influence termination
- Can be used to show soundness:
 - **Consistency:** there is no normal term of type [[⊥]]

- $\lambda \Pi$ is strongly normalizing
- Adding axioms (Σ) does not influence termination
- Can be used to show soundness:
 - **Consistency:** there is no normal term of type [[⊥]]
 - Adequacy: if $\llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$ and M is a normal form, then M = [N] for some N such that $\Gamma \vdash N : A$

- $\lambda \Pi$ is strongly normalizing
- Adding axioms (Σ) does not influence termination
- Can be used to show soundness:
 - **Consistency:** there is no normal term of type [[⊥]]
 - Adequacy: if $\llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$ and M is a normal form, then M = [N] for some N such that $\Gamma \vdash N : A$
 - **Conservativity:** if $\llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$ then *M* reduces to a normal form [N] for some *N* such that $\Gamma \vdash N : A$.

Adding rewrite rules (*R*) can break strong normalization:

• because \longrightarrow_R does not terminate

- Adding rewrite rules (*R*) can break strong normalization:
 - because \longrightarrow_R does not terminate
 - or because $\longrightarrow_R \cup \longrightarrow_\beta$ does not terminate

- Adding rewrite rules (*R*) can break strong normalization:
 - because \longrightarrow_R does not terminate
 - or because $\longrightarrow_R \cup \longrightarrow_\beta$ does not terminate
 - or even because \longrightarrow_{β} does not terminate for well-typed terms

- Adding rewrite rules (R) can break strong normalization:
 - because \longrightarrow_R does not terminate
 - or because $\longrightarrow_R \cup \longrightarrow_\beta$ does not terminate
- or even because \longrightarrow_{β} does not terminate for well-typed terms • Need to find other solutions.

- $\lambda \Pi$ embeddings do not preserve reduction.
- Obstacle for embedding theories with dependent types.
- Adding rewrite rules to $\lambda \Pi$ helps recover completeness...
- ... but can break soundness.

1 The $\lambda \Pi$ -calculus as a logical framework

2 The $\lambda \Pi$ -calculus modulo rewriting as a logical framework

3 Soundness in the $\lambda \Pi$ -calculus modulo

- in the algebra of reducibility candidates
- or in a general notion of Π-algebra.

- in the algebra of reducibility candidates
- or in a general notion of Π-algebra.

The model implies strong normalization of $\lambda \Pi / X$. Use this to prove soundness (consistency, adequacy, conservativity).

- in the algebra of reducibility candidates
- or in a general notion of Π-algebra.

The model implies strong normalization of $\lambda \Pi / X$. Use this to prove soundness (consistency, adequacy, conservativity).

Theorem (Dowek 2014)

There is a model for $\lambda \Pi / \mathbb{STT}$ and for $\lambda \Pi / \mathbb{COC}$.

- in the algebra of reducibility candidates
- or in a general notion of Π-algebra.

The model implies strong normalization of $\lambda \Pi / X$. Use this to prove soundness (consistency, adequacy, conservativity).

Theorem (Dowek 2014)

There is a model for $\lambda \Pi / \mathbb{STT}$ and for $\lambda \Pi / \mathbb{COC}$.

Problem: implies strong normalization in X, so at least as hard to prove as strong normalization in X.

If $\llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$, what can we say about M?

If $\llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$, what can we say about M?

Example

If X is the simply-typed λ -calculus, the polymorphic identity function is not well-typed:

```
\beta : Type \not\vdash (\lambda \alpha : Type. \lambda x : \alpha . x) \beta : \beta \to \beta
```

It is well-typed in $\lambda \Pi / X$:

 β : type \vdash ($\lambda \alpha$: type. λx : term α . x) β : term $\beta \rightarrow$ term β

If $\llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$, what can we say about M?

Example

If X is the simply-typed λ -calculus, the polymorphic identity function is not well-typed:

```
\beta : Type \not\vdash (\lambda \alpha : Type. \lambda x : \alpha . x) \beta : \beta \to \beta
```

It is well-typed in $\lambda \Pi / X$:

 β : type \vdash ($\lambda \alpha$: type. λx : term α . x) β : term $\beta \rightarrow$ term β

But it reduces to λx : term $\beta . x = [\lambda x : \beta . x]$, a term that is well-typed in X.

If $\llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$, what can we say about M?

Example

If X is the simply-typed λ -calculus, the polymorphic identity function is not well-typed:

```
\beta : Type \not\vdash (\lambda \alpha : Type. \lambda x : \alpha . x) \beta : \beta \to \beta
```

It is well-typed in $\lambda \Pi / X$:

 β : type \vdash ($\lambda \alpha$: type. λx : term α . x) β : term $\beta \rightarrow$ term β

But it reduces to $\lambda x : \text{term } \beta . x = [\lambda x : \beta . x]$, a term that is well-typed in X. Idea: reduce only what is necessary.

Define an erasure from $\lambda \Pi / X$ to X:

$$|x| = x$$

$$|\lambda x : A. M| = \lambda x : ||A||. |M|$$

$$|M N| = |M| |N|$$

$$\|\operatorname{term} A\| = |A|$$
$$\|A \to B\| = \|A\| \to \|B\|$$

Erasure is the inverse of the translation:

$$|[M]| = M$$
$$||[A]]| = A$$

• If $\llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$ in $\lambda \Pi / X$ then $\Gamma \vdash |M| : A$ in X?

If
$$\llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$$
 in $\lambda \Pi / X$ then $\Gamma \vdash |M| : A$ in X ?

 $\beta:\mathsf{type}\vdash\big(\lambda\alpha:\mathsf{type}.\,\lambda x:\mathsf{term}\,\alpha.\,x\big)\,\beta:\mathsf{term}\,\beta\to\mathsf{term}\,\beta$

■ If
$$\llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$$
 in $\lambda \Pi / X$ then $\Gamma \vdash |M| : A$ in X ?
 β : type $\vdash (\lambda \alpha : type. \lambda x : term \alpha. x) \beta : term \beta \rightarrow term \beta$

If
$$\llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$$
 in $\lambda \Pi / X$ then $M \longrightarrow^* M'$ such that $\Gamma \vdash |M'| : A$ in X ?

■ If
$$\llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$$
 in $\lambda \Pi / X$ then $\Gamma \vdash |M| : A$ in X ?
 β : type $\vdash (\lambda \alpha : type. \lambda x : term \alpha . x) \beta : term \beta \rightarrow term \beta$

■ If
$$\llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$$
 in $\lambda \Pi / X$ then $M \longrightarrow^* M'$ such that
 $\Gamma \vdash |M'| : A$ in X ?

$$\frac{\llbracket \Gamma \rrbracket \vdash M : \Pi X : A. \llbracket B \rrbracket \qquad \llbracket \Gamma \rrbracket \vdash N : A}{\llbracket \Gamma \rrbracket \vdash M N : \llbracket B \rrbracket$$

• If $\llbracket \Gamma \rrbracket \vdash M : A \text{ in } \lambda \Pi / X \text{ then } M \longrightarrow^* M' \text{ and } A \longrightarrow^* A' \text{ such that } \Gamma \vdash |M'| : ||A'|| \text{ in } X?$

• If $\llbracket \Gamma \rrbracket \vdash M : A \text{ in } \lambda \Pi / X \text{ then } M \longrightarrow^* M' \text{ and } A \longrightarrow^* A' \text{ such that } \Gamma \vdash |M'| : \|A'\| \text{ in } X?$ $\frac{\llbracket \Gamma \rrbracket, x : A \vdash M : B}{\llbracket \Gamma \rrbracket \vdash \lambda x : A. M : \Pi x : A. B}$

■ If
$$\llbracket \Gamma \rrbracket \vdash M : A \text{ in } \lambda \Pi / X \text{ then } M \longrightarrow^* M' \text{ and } A \longrightarrow^* A' \text{ such that } \Gamma \vdash |M'| : ||A'|| \text{ in } X?$$

$$\frac{\llbracket \Gamma \rrbracket, x : A \vdash M : B}{\llbracket \Gamma \rrbracket \vdash \lambda x : A. M : \Pi x : A. B}$$

• If $\Gamma \vdash M : A$ in $\lambda \Pi / X$ then $\Gamma \longrightarrow^* \Gamma'$, $M \longrightarrow^* M'$, and $A \longrightarrow^* A'$ such that $\|\Gamma'\| \vdash |M'| : \|A'\|$ in X?

■ If
$$\llbracket \Gamma \rrbracket \vdash M : A \text{ in } \lambda \Pi / X \text{ then } M \longrightarrow^* M' \text{ and } A \longrightarrow^* A' \text{ such that } \Gamma \vdash |M'| : ||A'|| \text{ in } X?$$

$$\frac{\llbracket \Gamma \rrbracket, x : A \vdash M : B}{\llbracket \Gamma \rrbracket \vdash \lambda x : A. M : \Pi x : A. B}$$

■ If $\Gamma \vdash M : A$ in $\lambda \Pi / X$ then $\Gamma \longrightarrow^* \Gamma', M \longrightarrow^* M'$, and $A \longrightarrow^* A'$ such that $\|\Gamma'\| \vdash |M'| : \|A'\|$ in X? $\vdash \lambda \alpha :$ type. $\lambda x :$ term $\alpha . x : \Pi \alpha :$. term $\beta \rightarrow$ term β What have we learned?

- **1** $\lambda \Pi / X$ can type more terms than X.
- 2 These terms can be used to construct proofs for the translation of *X* types.
- **3** The $\lambda \Pi / X$ terms that inhabit the translation of X types can be reduced to the translation of X terms.

What have we learned?

- **1** $\lambda \Pi / X$ can type more terms than X.
- 2 These terms can be used to construct proofs for the translation of *X* types.
- **3** The $\lambda \Pi / X$ terms that inhabit the translation of X types can be reduced to the translation of X terms.

Need higher-order reasonning.

Let Γ' be a context in X. Define the predicate $\Gamma' \vDash M : A$ by induction on A:

Reducibility

Let Γ' be a context in X. Define the predicate $\Gamma' \vDash M : A$ by induction on A:

• If A = type then $\Gamma' \vDash M : A$ when $M \longrightarrow^* M'$ such that $\Gamma' \vdash |M'| :$ **Type**.
Reducibility

Let Γ' be a context in X. Define the predicate $\Gamma' \vDash M : A$ by induction on A:

- If A = type then $\Gamma' \vDash M : A$ when $M \longrightarrow^* M'$ such that $\Gamma' \vdash |M'| :$ **Type**.
- If $A = \operatorname{term} B$ then $\Gamma' \vDash M : A$ when $M \longrightarrow^* M'$ and $B \longrightarrow^* B'$ such that $\Gamma' \vdash |M'| : |B'|$.

Reducibility

Let Γ' be a context in X. Define the predicate $\Gamma' \vDash M : A$ by induction on A:

- If A = type then $\Gamma' \vDash M : A$ when $M \longrightarrow^* M'$ such that $\Gamma' \vdash |M'| :$ **Type**.
- If $A = \operatorname{term} B$ then $\Gamma' \vDash M : A$ when $M \longrightarrow^* M'$ and $B \longrightarrow^* B'$ such that $\Gamma' \vdash |M'| : |B'|$.
- If $A = \prod x : B$. C then $\Gamma' \models M : A$ when for for all N such that $\Gamma' \models N : B$, $\Gamma' \models M N : \{N/x\} C$.

Reducibility

Let Γ' be a context in X. Define the predicate $\Gamma' \vDash M : A$ by induction on A:

- If A = type then $\Gamma' \vDash M : A$ when $M \longrightarrow^* M'$ such that $\Gamma' \vdash |M'| :$ **Type**.
- If $A = \operatorname{term} B$ then $\Gamma' \vDash M : A$ when $M \longrightarrow^* M'$ and $B \longrightarrow^* B'$ such that $\Gamma' \vdash |M'| : |B'|$.
- If $A = \Pi x : B$. C then $\Gamma' \models M : A$ when for for all N such that $\Gamma' \models N : B$, $\Gamma' \models M N : \{N/x\} C$.

If σ is a substitution mapping variables to terms:

• $\Gamma' \vDash \sigma : \Gamma$ when $\Gamma' \vDash \sigma(x) : \sigma(A)$ for all $(x : A) \in \Gamma$

Theorem

If $\Gamma \vdash M : A$ in $\lambda \Pi / X$ then for any X context Γ' and substitution σ such that $\Gamma' \vDash \sigma : \Gamma, \Gamma' \vDash \sigma(M) : \sigma(A)$.

Proof.

By induction on the derivation of $\Gamma \vdash M : A$.

Theorem

If $\Gamma \vdash M : A$ in $\lambda \Pi / X$ then for any X context Γ' and substitution σ such that $\Gamma' \vDash \sigma : \Gamma, \Gamma' \vDash \sigma(M) : \sigma(A)$.

Proof.

By induction on the derivation of $\Gamma \vdash M : A$.

Corollary (Conservativity)

If
$$\llbracket \Gamma \rrbracket \vdash M : \llbracket A \rrbracket$$
 then $M \longrightarrow^* M'$ such that $\Gamma \vdash |M'| : A$.

Proof.

By taking the identity substitution, $\|\sigma(\llbracket A \rrbracket)\| = \|\llbracket A \rrbracket\| = A$.

Relative normalization

- Avoid complex techniques such as reducibility candidates.
- Works for non-terminating theories!
- For pure type systems, $\lambda \Pi / X$ corresponds to a conservative completion of X.

- Strong normalization = all terms in $\lambda \Pi / X$ are strongly normalizing
 - Proved using termination models
- **Relative normalization** = terms in $\lambda \Pi / X$ can be reduced to terms in X.
 - Proved by using reducibility on a more general statement
- Both approaches show conservativity of $\lambda \Pi / X$

Conclusion

- The $\lambda\Pi$ -calculus modulo rewriting can be used as a logical framework
- We use it for logical embeddings that preserve reduction
- Soundness needs to be handled carefully through models or reducibility techniques

Questions?