
Soundness of embeddings
in the λΠ-calculus modulo rewriting

Ali Assaf

Deducteam, Inria Paris-Rocquencourt
École Polytechnique

Parsifal seminar
October 16, 2014

1 / 41

1 The λΠ-calculus as a logical framework

2 The λΠ-calculus modulo rewriting as a logical framework

3 Soundness in the λΠ-calculus modulo

2 / 41

The λΠ-calculus

Simplest typed λ-calculus with dependent types
Expresses proofs of first-order logic through the Curry-Howard
correspondence
Used as a logical framework

3 / 41

The λΠ-calculus

sorts s ::= Type | Kind
terms M,N,A,B ::= x | s | Πx : A.B | λx : A.M | M N
contexts Γ ::= · | Γ, x : A

4 / 41

Typing rules

Γ ` M : A

(x : A) ∈ Γ

Γ ` x : A Γ ` Type : Kind
Γ ` A : Type Γ, x : A ` B : s

Γ ` Πx : A.B : s

Γ ` A : Type Γ, x : A ` M : B
Γ ` λx : A.M : Πx : A.B

Γ ` M : Πx : A.B Γ ` N : A
Γ ` M N : {N/x}B

Γ ` M : A Γ ` B : Type A ≡β B
Γ ` M : B

WF (Γ)

WF (·)
WF (Γ) Γ ` A : s

WF (Γ, x : A)

Using λΠ as a logical framework

Logical framework in Wikipedia:

In logic, a logical framework provides a means to define
(or present) a logic as a signature in a higher-order type
theory in such a way that provability of a formula in the
original logic reduces to a type inhabitation problem in
the framework type theory.

To embed a given theory X in λΠ, one must:
1 define a signature context Σ in λΠ describing the theory X
2 define a translation from the terms of X to the terms of λΠ in

the context Σ.

6 / 41

Using λΠ as a logical framework

Logical framework in Wikipedia:

In logic, a logical framework provides a means to define
(or present) a logic as a signature in a higher-order type
theory in such a way that provability of a formula in the
original logic reduces to a type inhabitation problem in
the framework type theory.

To embed a given theory X in λΠ, one must:
1 define a signature context Σ in λΠ describing the theory X
2 define a translation from the terms of X to the terms of λΠ in

the context Σ.

6 / 41

System F in λΠ

Define the signature context Σ as:

type : Type
arrow : type→ type→ type
forall : (type→ type)→ type

term : type→ Type
lam : (termA→ termB)→ term (arrowAB)

app : term (arrowAB)→ termA→ termB
Lam : (ΠA : type. term (F A))→ term (forallF)

App : term (forallF)→ ΠA : type. term (F A)

7 / 41

System F in λΠ

Translate the types and the terms as:

[α] = α

[A→ B] = arrow [A] [B]

[∀α : Type.B] = forall (λα : type. [B])

[x] = x
[λx : A.M] = lam (λx : term [A]. [M])

[M N] = app [M] [N]

[Λα : Type.M] = Lam (λα : type. [M])

[M 〈A〉] = App [M] [A]

8 / 41

System F in λΠ

Example

The identity function id = Λα : Type. λx : α. x is translated as:

[id] = Lam (λα : type. lam (λx : termα. x))

The type A = ∀α : Type. α→ α is translated as:

[A] = forall (λα : type. arrowαα)

9 / 41

Completeness

If M is well-typed then [M] is well-typed in the context Σ:

` M : A =⇒ Σ ` [M] : term [A]

Define JAK = term [A]:

` M : A =⇒ Σ ` [M] : JAK

If M is well-typed in Γ then [M] is well-typed in the context Σ, JΓK:

Γ ` M : A =⇒ Σ, JΓK ` [M] : JAK

10 / 41

Completeness

If M is well-typed then [M] is well-typed in the context Σ:

` M : A =⇒ Σ ` [M] : term [A]

Define JAK = term [A]:

` M : A =⇒ Σ ` [M] : JAK

If M is well-typed in Γ then [M] is well-typed in the context Σ, JΓK:

Γ ` M : A =⇒ Σ, JΓK ` [M] : JAK

10 / 41

Completeness

If M is well-typed then [M] is well-typed in the context Σ:

` M : A =⇒ Σ ` [M] : term [A]

Define JAK = term [A]:

` M : A =⇒ Σ ` [M] : JAK

If M is well-typed in Γ then [M] is well-typed in the context Σ, JΓK:

Γ ` M : A =⇒ Σ, JΓK ` [M] : JAK

10 / 41

System F in λΠ

Example

The self-application of id is well-typed in the empty context:

` id 〈A〉 id : A

Its translation is well-typed in Σ:

Σ ` app (App [id] JAK) [id] : JAK

11 / 41

Completeness

1 If M is a proof of (has type) A in X then [M] is a proof of
(has type) JAK in λΠ.

2 If A is provable (is inhabited) in X then JAK is provable (is
inhabited) in λΠ.

3 If X is inconsistent (every A is inhabited) then λΠ is
inconsistent (every JAK is inhabited).

What about the converse?

12 / 41

Completeness

1 If M is a proof of (has type) A in X then [M] is a proof of
(has type) JAK in λΠ.

2 If A is provable (is inhabited) in X then JAK is provable (is
inhabited) in λΠ.

3 If X is inconsistent (every A is inhabited) then λΠ is
inconsistent (every JAK is inhabited).

What about the converse?

12 / 41

Completeness

1 If M is a proof of (has type) A in X then [M] is a proof of
(has type) JAK in λΠ.

2 If A is provable (is inhabited) in X then JAK is provable (is
inhabited) in λΠ.

3 If X is inconsistent (every A is inhabited) then λΠ is
inconsistent (every JAK is inhabited).

What about the converse?

12 / 41

Completeness

1 If M is a proof of (has type) A in X then [M] is a proof of
(has type) JAK in λΠ.

2 If A is provable (is inhabited) in X then JAK is provable (is
inhabited) in λΠ.

3 If X is inconsistent (every A is inhabited) then λΠ is
inconsistent (every JAK is inhabited).

What about the converse?

12 / 41

Soundness

1 Consistency: if X is consistent then λΠ is consistent.

2 Conservativity: if JAK is provable in λΠ then A is provable in
X .

3 Adequacy: every (normal) proof in λΠ corresponds to a proof
in X .

These are important properties for a logical framework!

13 / 41

Soundness

1 Consistency: if X is consistent then λΠ is consistent.
2 Conservativity: if JAK is provable in λΠ then A is provable in

X .

3 Adequacy: every (normal) proof in λΠ corresponds to a proof
in X .

These are important properties for a logical framework!

13 / 41

Soundness

1 Consistency: if X is consistent then λΠ is consistent.
2 Conservativity: if JAK is provable in λΠ then A is provable in

X .
3 Adequacy: every (normal) proof in λΠ corresponds to a proof

in X .

These are important properties for a logical framework!

13 / 41

Soundness

1 Consistency: if X is consistent then λΠ is consistent.
2 Conservativity: if JAK is provable in λΠ then A is provable in

X .
3 Adequacy: every (normal) proof in λΠ corresponds to a proof

in X .

These are important properties for a logical framework!

13 / 41

Summary

Source = X , Target = λΠ

Embedding = signature Σ + translation [·]
Completeness = typing in X =⇒ typing in λΠ

Soundness = typing in λΠ =⇒ typing in X

14 / 41

1 The λΠ-calculus as a logical framework

2 The λΠ-calculus modulo rewriting as a logical framework

3 Soundness in the λΠ-calculus modulo

15 / 41

Limitations of λΠ

The embedding does not preserve term (proof) reduction :

M −→∗ M ′ 6=⇒ [M] −→∗
[
M ′

]

The embedding does not preserve term (proof) equivalence:

M ≡ M ′ 6=⇒ [M] ≡
[
M ′

]

16 / 41

Limitations of λΠ

The embedding does not preserve term (proof) reduction :

M −→∗ M ′ 6=⇒ [M] −→∗
[
M ′

]
The embedding does not preserve term (proof) equivalence:

M ≡ M ′ 6=⇒ [M] ≡
[
M ′

]

16 / 41

Limitations of λΠ

Systems with dependent types (e.g. the calculus of constructions)
have a conversion rule:

Γ ` M : A A ≡ B
Γ ` M : B

In λΠ, JΓK ` [M] : JAK but JΓK 6` [M] : JBK (no completeness).

17 / 41

Conversion in λΠ

Approach 1: Introduce explicit equivalence judgements and a
conversion term:

equiv : type→ type→ Type
refl : equivMM

beta : equiv (app (lamF)N) (F N)

· · ·
conv : termA→ equiv AB→ termB

Cons:
Need to explicitely give the equivalence derivations.
Adding conv pollutes the structure of the terms and needs to
be taken care of in the equivalence relation.

Conversion in λΠ

Approach 2: Translate typing derivations instead of λ-terms

term : Type
lam : (term→ term)→ term
· · ·

hastype : term→ type→ Type
typelam : (Πx : term. hastype x A→ hastype (F x)B)→

hastype (lamF) (arrowAB)

· · ·

Pros:
conv does not interfere with the structure of the λ-terms.

Cons:
Lose Curry-Howard correspondence?
Still need to explicitely give the equivalence derivations.

The λΠ-calculus modulo rewriting

Idea: extend the conversion rule of the λΠ-calculus with a rewrite
system R :

Γ ` M : A Γ ` B : Type A ≡βR B
Γ ` M : B

Add rewrite rules so that the translation preserves reduction.

20 / 41

The λΠ-calculus modulo rewriting

Idea: extend the conversion rule of the λΠ-calculus with a rewrite
system R :

Γ ` M : A Γ ` B : Type A ≡βR B
Γ ` M : B

Add rewrite rules so that the translation preserves reduction.

20 / 41

The λΠ-calculus modulo rewriting

Idea: extend the conversion rule of the λΠ-calculus with a rewrite
system R :

Γ ` M : A Γ ` B : Type A ≡βR B
Γ ` M : B

Add rewrite rules so that the translation preserves reduction (in
addition to binding and typing).

20 / 41

Preserving reduction

Signature context Σ:

type : Type
arrow : type→ type→ type

term : type→ Type
lam : (termA→ termB)→ term (arrowAB)

app : term (arrowAB)→ termA→ termB

Rewrite rules R :

app (lamF)N −→ F N

21 / 41

Preserving reduction

Signature context Σ:

type : Type
arrow : type→ type→ type

term : type→ Type
lam : (termA→ termB)→ term (arrowAB)

app : term (arrowAB)→ termA→ termB

Rewrite rules R :

term (arrowAB) −→ termA→ termB
lamF −→ F

appM N −→ M N

22 / 41

Preserving reduction

Signature context Σ:

type : Type
arrow : type→ type→ type

term : type→ Type

Rewrite rules R :

term (arrowAB) −→ termA→ termB

Translation:

[λx : A.M] = λx : JAK. [M]

[M N] = [M] [N]

23 / 41

Preserving reduction

Theorem

If M −→ M ′ then [M] −→+ [M ′].

Corollary

If M −→∗ M ′ then [M] −→∗ [M ′].

Corollary

If M ≡ M ′ then [M] ≡ [M ′].

24 / 41

Preserving reduction

Theorem

If M −→ M ′ then [M] −→+ [M ′].

Corollary

If M −→∗ M ′ then [M] −→∗ [M ′].

Corollary

If M ≡ M ′ then [M] ≡ [M ′].

24 / 41

Preserving reduction

Theorem

If M −→ M ′ then [M] −→+ [M ′].

Corollary

If M −→∗ M ′ then [M] −→∗ [M ′].

Corollary

If M ≡ M ′ then [M] ≡ [M ′].

24 / 41

Completeness

Recovered typing preservation.

Theorem (Cousineau & Dowek 2007)

If Γ ` M : A then Σ, JΓK ` [M] : JAK.

Works for any functional pure type system:
System F
Calculus of constructions
Simple type theory

What about soundness?

25 / 41

Completeness

Recovered typing preservation.

Theorem (Cousineau & Dowek 2007)

If Γ ` M : A then Σ, JΓK ` [M] : JAK.

Works for any functional pure type system:
System F
Calculus of constructions
Simple type theory

What about soundness?

25 / 41

On termination and soundness

Link between termination and soundness:
λΠ is strongly normalizing

Adding axioms (Σ) does not influence termination

Can be used to show soundness:

Consistency: there is no normal term of type J⊥K

Adequacy: if JΓK ` M : JAK and M is a normal form, then
M = [N] for some N such that Γ ` N : A

Conservativity: if JΓK ` M : JAK then M reduces to a normal
form [N] for some N such that Γ ` N : A.

26 / 41

On termination and soundness

Link between termination and soundness:
λΠ is strongly normalizing

Adding axioms (Σ) does not influence termination

Can be used to show soundness:

Consistency: there is no normal term of type J⊥K

Adequacy: if JΓK ` M : JAK and M is a normal form, then
M = [N] for some N such that Γ ` N : A

Conservativity: if JΓK ` M : JAK then M reduces to a normal
form [N] for some N such that Γ ` N : A.

26 / 41

On termination and soundness

Link between termination and soundness:
λΠ is strongly normalizing

Adding axioms (Σ) does not influence termination

Can be used to show soundness:

Consistency: there is no normal term of type J⊥K

Adequacy: if JΓK ` M : JAK and M is a normal form, then
M = [N] for some N such that Γ ` N : A

Conservativity: if JΓK ` M : JAK then M reduces to a normal
form [N] for some N such that Γ ` N : A.

26 / 41

On termination and soundness

Link between termination and soundness:
λΠ is strongly normalizing

Adding axioms (Σ) does not influence termination

Can be used to show soundness:

Consistency: there is no normal term of type J⊥K

Adequacy: if JΓK ` M : JAK and M is a normal form, then
M = [N] for some N such that Γ ` N : A

Conservativity: if JΓK ` M : JAK then M reduces to a normal
form [N] for some N such that Γ ` N : A.

26 / 41

On termination and soundness

Link between termination and soundness:
λΠ is strongly normalizing

Adding axioms (Σ) does not influence termination

Can be used to show soundness:

Consistency: there is no normal term of type J⊥K

Adequacy: if JΓK ` M : JAK and M is a normal form, then
M = [N] for some N such that Γ ` N : A

Conservativity: if JΓK ` M : JAK then M reduces to a normal
form [N] for some N such that Γ ` N : A.

26 / 41

On termination and soundness

Adding rewrite rules (R) can break strong normalization:

because −→R does not terminate

or because −→R ∪ −→β does not terminate

or even because −→β does not terminate for well-typed terms

Need to find other solutions.

27 / 41

On termination and soundness

Adding rewrite rules (R) can break strong normalization:

because −→R does not terminate

or because −→R ∪ −→β does not terminate

or even because −→β does not terminate for well-typed terms

Need to find other solutions.

27 / 41

On termination and soundness

Adding rewrite rules (R) can break strong normalization:

because −→R does not terminate

or because −→R ∪ −→β does not terminate

or even because −→β does not terminate for well-typed terms

Need to find other solutions.

27 / 41

On termination and soundness

Adding rewrite rules (R) can break strong normalization:

because −→R does not terminate

or because −→R ∪ −→β does not terminate

or even because −→β does not terminate for well-typed terms

Need to find other solutions.

27 / 41

Summary

λΠ embeddings do not preserve reduction.
Obstacle for embedding theories with dependent types.
Adding rewrite rules to λΠ helps recover completeness...
... but can break soundness.

28 / 41

1 The λΠ-calculus as a logical framework

2 The λΠ-calculus modulo rewriting as a logical framework

3 Soundness in the λΠ-calculus modulo

29 / 41

Approach 1: termination models

Idea: build a model for λΠ/X
in the algebra of reducibility candidates
or in a general notion of Π-algebra.

The model implies strong normalization of λΠ/X . Use this to prove
soundness (consistency, adequacy, conservativity).

Theorem (Dowek 2014)

There is a model for λΠ/STT and for λΠ/COC.

Problem: implies strong normalization in X , so at least as hard to
prove as strong normalization in X .

30 / 41

Approach 1: termination models

Idea: build a model for λΠ/X
in the algebra of reducibility candidates
or in a general notion of Π-algebra.

The model implies strong normalization of λΠ/X . Use this to prove
soundness (consistency, adequacy, conservativity).

Theorem (Dowek 2014)

There is a model for λΠ/STT and for λΠ/COC.

Problem: implies strong normalization in X , so at least as hard to
prove as strong normalization in X .

30 / 41

Approach 1: termination models

Idea: build a model for λΠ/X
in the algebra of reducibility candidates
or in a general notion of Π-algebra.

The model implies strong normalization of λΠ/X . Use this to prove
soundness (consistency, adequacy, conservativity).

Theorem (Dowek 2014)

There is a model for λΠ/STT and for λΠ/COC.

Problem: implies strong normalization in X , so at least as hard to
prove as strong normalization in X .

30 / 41

Approach 1: termination models

Idea: build a model for λΠ/X
in the algebra of reducibility candidates
or in a general notion of Π-algebra.

The model implies strong normalization of λΠ/X . Use this to prove
soundness (consistency, adequacy, conservativity).

Theorem (Dowek 2014)

There is a model for λΠ/STT and for λΠ/COC.

Problem: implies strong normalization in X , so at least as hard to
prove as strong normalization in X .

30 / 41

Approach 2: relative normalization

If JΓK ` M : JAK, what can we say about M?

Example

If X is the simply-typed λ-calculus, the polymorphic identity
function is not well-typed:

β : Type 6` (λα : Type. λx : α. x)β : β → β

It is well-typed in λΠ/X :

β : type ` (λα : type. λx : termα. x)β : termβ → termβ

But it reduces to λx : termβ. x = [λx : β. x], a term that is
well-typed in X .
Idea: reduce only what is necessary.

31 / 41

Approach 2: relative normalization

If JΓK ` M : JAK, what can we say about M?

Example

If X is the simply-typed λ-calculus, the polymorphic identity
function is not well-typed:

β : Type 6` (λα : Type. λx : α. x)β : β → β

It is well-typed in λΠ/X :

β : type ` (λα : type. λx : termα. x)β : termβ → termβ

But it reduces to λx : termβ. x = [λx : β. x], a term that is
well-typed in X .
Idea: reduce only what is necessary.

31 / 41

Approach 2: relative normalization

If JΓK ` M : JAK, what can we say about M?

Example

If X is the simply-typed λ-calculus, the polymorphic identity
function is not well-typed:

β : Type 6` (λα : Type. λx : α. x)β : β → β

It is well-typed in λΠ/X :

β : type ` (λα : type. λx : termα. x)β : termβ → termβ

But it reduces to λx : termβ. x = [λx : β. x], a term that is
well-typed in X .

Idea: reduce only what is necessary.

31 / 41

Approach 2: relative normalization

If JΓK ` M : JAK, what can we say about M?

Example

If X is the simply-typed λ-calculus, the polymorphic identity
function is not well-typed:

β : Type 6` (λα : Type. λx : α. x)β : β → β

It is well-typed in λΠ/X :

β : type ` (λα : type. λx : termα. x)β : termβ → termβ

But it reduces to λx : termβ. x = [λx : β. x], a term that is
well-typed in X .
Idea: reduce only what is necessary.

31 / 41

Erasure

Define an erasure from λΠ/X to X :

|x | = x
|λx : A.M| = λx : ‖A‖. |M|

|M N| = |M| |N|

‖termA‖ = |A|
‖A→ B‖ = ‖A‖ → ‖B‖

Erasure is the inverse of the translation:

|[M]| = M
‖JAK‖ = A

32 / 41

Proving soundness

What statement should we prove?
If JΓK ` M : JAK in λΠ/X then Γ ` |M| : A in X?

β : type ` (λα : type. λx : termα. x)β : termβ → termβ

If JΓK ` M : JAK in λΠ/X then M −→∗ M ′ such that
Γ ` |M ′| : A in X?

JΓK ` M : Πx : A. JBK JΓK ` N : A
JΓK ` M N : JBK

33 / 41

Proving soundness

What statement should we prove?
If JΓK ` M : JAK in λΠ/X then Γ ` |M| : A in X?
β : type ` (λα : type. λx : termα. x)β : termβ → termβ

If JΓK ` M : JAK in λΠ/X then M −→∗ M ′ such that
Γ ` |M ′| : A in X?

JΓK ` M : Πx : A. JBK JΓK ` N : A
JΓK ` M N : JBK

33 / 41

Proving soundness

What statement should we prove?
If JΓK ` M : JAK in λΠ/X then Γ ` |M| : A in X?
β : type ` (λα : type. λx : termα. x)β : termβ → termβ

If JΓK ` M : JAK in λΠ/X then M −→∗ M ′ such that
Γ ` |M ′| : A in X?

JΓK ` M : Πx : A. JBK JΓK ` N : A
JΓK ` M N : JBK

33 / 41

Proving soundness

What statement should we prove?
If JΓK ` M : JAK in λΠ/X then Γ ` |M| : A in X?
β : type ` (λα : type. λx : termα. x)β : termβ → termβ

If JΓK ` M : JAK in λΠ/X then M −→∗ M ′ such that
Γ ` |M ′| : A in X?

JΓK ` M : Πx : A. JBK JΓK ` N : A
JΓK ` M N : JBK

33 / 41

Proving soundness

What statement should we prove?
If JΓK ` M : A in λΠ/X then M −→∗ M ′ and A −→∗ A′ such
that Γ ` |M ′| : ‖A′‖ in X?

JΓK , x : A ` M : B
JΓK ` λx : A.M : Πx : A.B

If Γ ` M : A in λΠ/X then Γ −→∗ Γ′, M −→∗ M ′, and
A −→∗ A′ such that ‖Γ′‖ ` |M ′| : ‖A′‖ in X?

` λα : type. λx : termα. x : Πα : . termβ → termβ

34 / 41

Proving soundness

What statement should we prove?
If JΓK ` M : A in λΠ/X then M −→∗ M ′ and A −→∗ A′ such
that Γ ` |M ′| : ‖A′‖ in X?

JΓK , x : A ` M : B
JΓK ` λx : A.M : Πx : A.B

If Γ ` M : A in λΠ/X then Γ −→∗ Γ′, M −→∗ M ′, and
A −→∗ A′ such that ‖Γ′‖ ` |M ′| : ‖A′‖ in X?

` λα : type. λx : termα. x : Πα : . termβ → termβ

34 / 41

Proving soundness

What statement should we prove?
If JΓK ` M : A in λΠ/X then M −→∗ M ′ and A −→∗ A′ such
that Γ ` |M ′| : ‖A′‖ in X?

JΓK , x : A ` M : B
JΓK ` λx : A.M : Πx : A.B

If Γ ` M : A in λΠ/X then Γ −→∗ Γ′, M −→∗ M ′, and
A −→∗ A′ such that ‖Γ′‖ ` |M ′| : ‖A′‖ in X?

` λα : type. λx : termα. x : Πα : . termβ → termβ

34 / 41

Proving soundness

What statement should we prove?
If JΓK ` M : A in λΠ/X then M −→∗ M ′ and A −→∗ A′ such
that Γ ` |M ′| : ‖A′‖ in X?

JΓK , x : A ` M : B
JΓK ` λx : A.M : Πx : A.B

If Γ ` M : A in λΠ/X then Γ −→∗ Γ′, M −→∗ M ′, and
A −→∗ A′ such that ‖Γ′‖ ` |M ′| : ‖A′‖ in X?

` λα : type. λx : termα. x : Πα : . termβ → termβ

34 / 41

Proving soundness

What have we learned?
1 λΠ/X can type more terms than X.
2 These terms can be used to construct proofs for the

translation of X types.
3 The λΠ/X terms that inhabit the translation of X types can

be reduced to the translation of X terms.

Need higher-order reasonning.

35 / 41

Proving soundness

What have we learned?
1 λΠ/X can type more terms than X.
2 These terms can be used to construct proofs for the

translation of X types.
3 The λΠ/X terms that inhabit the translation of X types can

be reduced to the translation of X terms.
Need higher-order reasonning.

35 / 41

Reducibility

Let Γ′ be a context in X . Define the predicate Γ′ � M : A by
induction on A:

If A = type then Γ′ � M : A when M −→∗ M ′ such that
Γ′ ` |M ′| : Type.

If A = termB then Γ′ � M : A when M −→∗ M ′ and
B −→∗ B ′ such that Γ′ ` |M ′| : |B ′|.

If A = Πx : B.C then Γ′ � M : A when for for all N such that
Γ′ � N : B , Γ′ � M N : {N/x}C .

If σ is a substitution mapping variables to terms:
Γ′ � σ : Γ when Γ′ � σ (x) : σ (A) for all (x : A) ∈ Γ

36 / 41

Reducibility

Let Γ′ be a context in X . Define the predicate Γ′ � M : A by
induction on A:

If A = type then Γ′ � M : A when M −→∗ M ′ such that
Γ′ ` |M ′| : Type.

If A = termB then Γ′ � M : A when M −→∗ M ′ and
B −→∗ B ′ such that Γ′ ` |M ′| : |B ′|.

If A = Πx : B.C then Γ′ � M : A when for for all N such that
Γ′ � N : B , Γ′ � M N : {N/x}C .

If σ is a substitution mapping variables to terms:
Γ′ � σ : Γ when Γ′ � σ (x) : σ (A) for all (x : A) ∈ Γ

36 / 41

Reducibility

Let Γ′ be a context in X . Define the predicate Γ′ � M : A by
induction on A:

If A = type then Γ′ � M : A when M −→∗ M ′ such that
Γ′ ` |M ′| : Type.

If A = termB then Γ′ � M : A when M −→∗ M ′ and
B −→∗ B ′ such that Γ′ ` |M ′| : |B ′|.

If A = Πx : B.C then Γ′ � M : A when for for all N such that
Γ′ � N : B , Γ′ � M N : {N/x}C .

If σ is a substitution mapping variables to terms:
Γ′ � σ : Γ when Γ′ � σ (x) : σ (A) for all (x : A) ∈ Γ

36 / 41

Reducibility

Let Γ′ be a context in X . Define the predicate Γ′ � M : A by
induction on A:

If A = type then Γ′ � M : A when M −→∗ M ′ such that
Γ′ ` |M ′| : Type.

If A = termB then Γ′ � M : A when M −→∗ M ′ and
B −→∗ B ′ such that Γ′ ` |M ′| : |B ′|.

If A = Πx : B.C then Γ′ � M : A when for for all N such that
Γ′ � N : B , Γ′ � M N : {N/x}C .

If σ is a substitution mapping variables to terms:
Γ′ � σ : Γ when Γ′ � σ (x) : σ (A) for all (x : A) ∈ Γ

36 / 41

Reducibility

Let Γ′ be a context in X . Define the predicate Γ′ � M : A by
induction on A:

If A = type then Γ′ � M : A when M −→∗ M ′ such that
Γ′ ` |M ′| : Type.

If A = termB then Γ′ � M : A when M −→∗ M ′ and
B −→∗ B ′ such that Γ′ ` |M ′| : |B ′|.

If A = Πx : B.C then Γ′ � M : A when for for all N such that
Γ′ � N : B , Γ′ � M N : {N/x}C .

If σ is a substitution mapping variables to terms:
Γ′ � σ : Γ when Γ′ � σ (x) : σ (A) for all (x : A) ∈ Γ

36 / 41

Soundness

Theorem

If Γ ` M : A in λΠ/X then for any X context Γ′ and substitution σ
such that Γ′ � σ : Γ, Γ′ � σ(M) : σ(A).

Proof.

By induction on the derivation of Γ ` M : A.

Corollary (Conservativity)

If JΓK ` M : JAK then M −→∗ M ′ such that Γ ` |M ′| : A.

Proof.

By taking the identity substitution, ‖σ(JAK)‖ = ‖JAK‖ = A.

37 / 41

Soundness

Theorem

If Γ ` M : A in λΠ/X then for any X context Γ′ and substitution σ
such that Γ′ � σ : Γ, Γ′ � σ(M) : σ(A).

Proof.

By induction on the derivation of Γ ` M : A.

Corollary (Conservativity)

If JΓK ` M : JAK then M −→∗ M ′ such that Γ ` |M ′| : A.

Proof.

By taking the identity substitution, ‖σ(JAK)‖ = ‖JAK‖ = A.

37 / 41

Relative normalization

Avoid complex techniques such as reducibility candidates.
Works for non-terminating theories!
For pure type systems, λΠ/X corresponds to a conservative
completion of X .

38 / 41

Summary

Strong normalization = all terms in λΠ/X are strongly
normalizing

Proved using termination models

Relative normalization = terms in λΠ/X can be reduced to
terms in X .

Proved by using reducibility on a more general statement

Both approaches show conservativity of λΠ/X

39 / 41

Conclusion

The λΠ-calculus modulo rewriting can be used as a logical
framework
We use it for logical embeddings that preserve reduction
Soundness needs to be handled carefully through models or
reducibility techniques

40 / 41

Conclusion

Questions?

41 / 41

	The -calculus as a logical framework
	The -calculus modulo rewriting as a logical framework
	Soundness in the -calculus modulo

